Scintillating crystals have traditionally found extensive use in both homogeneous and sampling calorimeters in previous high-energy physics experiments. Recent years have witnessed significant advancements within the scintillator community, particularly concerning novel, fast light-emission processes and innovative materials. This ongoing R&D is of utmost importance as it is central to meeting the demanding requirements of future detectors designed for high-luminosity colliders, where exceptional radiation tolerance and ultra-fast timing performance are critical benchmarks. The objective of this PhD thesis is both to explore the potential of emerging scintillating materials within the realm of high energy physics and to conceive and test small prototypes intended for deployment in future collider experiments. The outcomes of these investigations might lead to a substantial contribution to the development of innovative crystal-based detectors capable of operating effectively in both low and high count rates environments. The R&D efforts focused on identifying promising scintillating crystals, leading to the selection of BSO and mixed BGSO crystals as candidates for dual-readout calorimetry. Characterization campaigns conducted on these samples unveiled optimal timing performance within the range of 30 % to 50 % Ge fractions. Additionally, the timing properties of yttrium-doped BaF2 samples were evaluated at low energies, revealing a reduction in the slow component of BaF2 scintillation without significant impact on the cross-luminescent component. This sub-nanosecond emission offers the potential for precise time tagging and reduced pile-up in high radiation environments. Furthermore, two-dimensional organic-inorganic perovskite scintillators were tested, demonstrating promising results in terms of both scintillating and timing properties. Beyond the investigation of crystal properties, the timing performance of several promising materials as high-energy charged particle detectors was examined through Monte Carlo simulations and subsequently in testbeam campaigns. Many pixel scintillators, mainly sized at 2 × 2 × 10 mm3, were coupled with silicon photomultipliers (SiPMs) and read out using high-frequency electronics to detect 150 GeV minimum ionizing particles. Standard scintillators, such as LSO:Ce,Ca, LYSO:Ce and GFAG, cross-luminescent materials, like BaF2 and BaF2:Y, and crystals exploiting Cherenkov light for timing, such as BGSO and PbWO4, were measured and many of them achieved a single-detector time resolution σ < 20 ps. The last activity undertaken involved exploring the dual readout capacity of a sizeable PbWO4 crystal employing photomultiplier tubes (PMTs), both with and without optical filters to discriminate between Cherenkov and scintillation light. The final objective of this endeavour was to investigate a pulse shape discrimination method for extracting valuable information to compensate for energy losses in hadronic showers. This investigation commenced with preliminary Monte Carlo simulations, followed by the construction and testing of a small prototype under high-energy electrons and pions.

I cristalli scintillatori hanno tradizionalmente trovato ampio impiego nell’ambito di precedenti esperimenti in fisica delle alte energie sia nei calorimetri omogenei, che in quelli a campionamento. Negli ultimi anni si sono registrati progressi significativi all’interno di gruppi di ricerca che lavorano con scintillatori, in particolar modo per ciò che riguarda nuovi processi ultra-veloci di emissione di luce e lo sviluppo di materiali innovativi. L’R&D in corso in questo ambito è di fondamentale importanza, in quanto è centrale per soddisfare le esigenti richieste dei futuri rivelatori progettati per collider ad alta luminosità, dove una straordinaria tolleranza alla radiazione incidente e timing ultraveloce sono parametri critici. L’obiettivo di questa tesi di dottorato è sia esplorare il potenziale dei nuovi materiali scintillanti nell’ambito della fisica delle alte energie, sia concepire e testare prototipi destinati all’impiego in futuri esperimenti nei collider. I risultati di queste ricerche potrebbero apportare un contributo significativo allo sviluppo di rivelatori a cristalli innovativi e capaci di operare in modo efficace sia in ambienti a bassa che ad alta luminosità. La ricerca si è concentrata sull’individuazione di cristalli scintillanti promettenti, e ha portato alla selezione dei BSO e BGSO come candidati per calorimetria dual readout. Le campagne di caratterizzazione condotte su questi campioni hanno rivelato ottime prestazioni temporali per cristalli con frazione di Ge comprese tra il 30 % e il 50 %. Inoltre, sono state valutate le proprietà temporali dei campioni di BaF2 dopati con ittrio a basse energie, rivelando una riduzione della componente lenta della scintillazione del BaF2 senza un impatto significativo sulla cross-luminescenza. Questa emissione al di sotto del nanosecondo offre il potenziale per un timing preciso e una riduzione del pile-up in ambienti ad alta radiazione. Inoltre, sono stati testati scintillatori di perovskite organico-inorganico bidimensionali, i quali hanno mostrato risultati promettenti in termini di proprietà scintillanti e temporali. Oltre ad indagare le proprietà dei cristalli, sono state esaminate le prestazioni temporali di vari materiali promettenti come rivelatori di particelle cariche di alta energia mediante simulazioni Monte Carlo e successivamente in campagne testbeam. Molti cristalli scintillatori, principalmente delle dimensioni di 2 × 2 × 10 mm3, sono stati accoppiati a fotomoltiplicatori al silicio (SiPM) e letti tramite elettronica ad alta frequenza per rivelare minimum ionizing particles (MIPs) di 150 GeV. Scintillatori standard come LSO:Ce,Ca, LYSO:Ce e GFAG, materiali cross-luminescenti come BaF2 e BaF :Y, e cristalli che sfruttano la luce Cherenkov per il timing, come BGSO e PbWO4, sono stati misurati e molti di essi hanno raggiunto una risoluzione temporale per singolo detector σ inferiore a 20 ps. L’ultima attività intrapresa ha riguardato l’esplorazione della capacità di dual readout di un cristallo di PbWO4 di grandi dimensioni utilizzando tubi fotomoltiplicatori (PMT), sia con che senza filtri ottici per discriminare tra la luce Cherenkov e la luce di scintillazione. L’obiettivo finale di questa indagine è di testare un metodo di discriminazione delle forme d’onda per estrarre dei parametri per compensare le perdite di energia nelle shower adroniche. Questa indagine è iniziata con simulazioni Monte Carlo, seguite dalla costruzione e test di un piccolo prototipo posto poi sul fascio e irraggiato con elettroni e pioni ad alta energia.

(2024). Exploring Novel Scintillating Materials and Light Production Mechanisms for Next-Generation High Energy Physics Detectors. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

Exploring Novel Scintillating Materials and Light Production Mechanisms for Next-Generation High Energy Physics Detectors

CALÀ, ROBERTO
2024

Abstract

Scintillating crystals have traditionally found extensive use in both homogeneous and sampling calorimeters in previous high-energy physics experiments. Recent years have witnessed significant advancements within the scintillator community, particularly concerning novel, fast light-emission processes and innovative materials. This ongoing R&D is of utmost importance as it is central to meeting the demanding requirements of future detectors designed for high-luminosity colliders, where exceptional radiation tolerance and ultra-fast timing performance are critical benchmarks. The objective of this PhD thesis is both to explore the potential of emerging scintillating materials within the realm of high energy physics and to conceive and test small prototypes intended for deployment in future collider experiments. The outcomes of these investigations might lead to a substantial contribution to the development of innovative crystal-based detectors capable of operating effectively in both low and high count rates environments. The R&D efforts focused on identifying promising scintillating crystals, leading to the selection of BSO and mixed BGSO crystals as candidates for dual-readout calorimetry. Characterization campaigns conducted on these samples unveiled optimal timing performance within the range of 30 % to 50 % Ge fractions. Additionally, the timing properties of yttrium-doped BaF2 samples were evaluated at low energies, revealing a reduction in the slow component of BaF2 scintillation without significant impact on the cross-luminescent component. This sub-nanosecond emission offers the potential for precise time tagging and reduced pile-up in high radiation environments. Furthermore, two-dimensional organic-inorganic perovskite scintillators were tested, demonstrating promising results in terms of both scintillating and timing properties. Beyond the investigation of crystal properties, the timing performance of several promising materials as high-energy charged particle detectors was examined through Monte Carlo simulations and subsequently in testbeam campaigns. Many pixel scintillators, mainly sized at 2 × 2 × 10 mm3, were coupled with silicon photomultipliers (SiPMs) and read out using high-frequency electronics to detect 150 GeV minimum ionizing particles. Standard scintillators, such as LSO:Ce,Ca, LYSO:Ce and GFAG, cross-luminescent materials, like BaF2 and BaF2:Y, and crystals exploiting Cherenkov light for timing, such as BGSO and PbWO4, were measured and many of them achieved a single-detector time resolution σ < 20 ps. The last activity undertaken involved exploring the dual readout capacity of a sizeable PbWO4 crystal employing photomultiplier tubes (PMTs), both with and without optical filters to discriminate between Cherenkov and scintillation light. The final objective of this endeavour was to investigate a pulse shape discrimination method for extracting valuable information to compensate for energy losses in hadronic showers. This investigation commenced with preliminary Monte Carlo simulations, followed by the construction and testing of a small prototype under high-energy electrons and pions.
PIZZICHEMI, MARCO
PAGANONI, MARCO
Calorimetria; Scintillatori; Timing; Timing detectors; Dual readout
Calorimetry; Scintillators; Timing; Timing detectors; Dual readout
FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
2-feb-2024
36
2022/2023
open
(2024). Exploring Novel Scintillating Materials and Light Production Mechanisms for Next-Generation High Energy Physics Detectors. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_848345.pdf

accesso aperto

Descrizione: Tesi di Cala' Roberto - 848345
Tipologia di allegato: Doctoral thesis
Dimensione 9.24 MB
Formato Adobe PDF
9.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/459879
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact