Einstein's theory of General Relativity implies that energy, i.e., matter, curves space-time and thus deforms lightlike geodesics, giving rise to gravitational lensing. This phenomenon is well understood in the case of the Schwarzschild metric and has been accurately described in the past; however, lensing in the Kerr space-time has received less attention in the literature despite potential practical observational applications. In particular, lensing in such space is not expressible as the gradient of a scalar potential and as such is a source of curl-like signatures and an asymmetric shear pattern. In this paper, we develop a differentiable lensing map in the Kerr metric, reworking and extending previous approaches. By using standard tools of weak gravitational lensing, we isolate and quantify the distortion that is uniquely induced by the presence of angular momentum in the metric. We apply this framework to the distortion induced by a Kerr-like foreground object on a distribution of background of sources. We verify that the new unique lensing signature is orders of magnitude below current observational bounds for a range of lens configurations.

Renzini, A., Contaldi, C., Heavens, A. (2017). Mapping weak lensing distortions in the Kerr metric. PHYSICAL REVIEW D, 95(12) [10.1103/PhysRevD.95.124047].

Mapping weak lensing distortions in the Kerr metric

Renzini A. I.
;
2017

Abstract

Einstein's theory of General Relativity implies that energy, i.e., matter, curves space-time and thus deforms lightlike geodesics, giving rise to gravitational lensing. This phenomenon is well understood in the case of the Schwarzschild metric and has been accurately described in the past; however, lensing in the Kerr space-time has received less attention in the literature despite potential practical observational applications. In particular, lensing in such space is not expressible as the gradient of a scalar potential and as such is a source of curl-like signatures and an asymmetric shear pattern. In this paper, we develop a differentiable lensing map in the Kerr metric, reworking and extending previous approaches. By using standard tools of weak gravitational lensing, we isolate and quantify the distortion that is uniquely induced by the presence of angular momentum in the metric. We apply this framework to the distortion induced by a Kerr-like foreground object on a distribution of background of sources. We verify that the new unique lensing signature is orders of magnitude below current observational bounds for a range of lens configurations.
Articolo in rivista - Articolo scientifico
gravitational lensing
English
2017
95
12
124047
none
Renzini, A., Contaldi, C., Heavens, A. (2017). Mapping weak lensing distortions in the Kerr metric. PHYSICAL REVIEW D, 95(12) [10.1103/PhysRevD.95.124047].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/459647
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
Social impact