Using three common polymeric materials (polypropylene (PP), polytetrafluoroethylene (PTFE) and polycaprolactone (PCL)), a standard oxygen-plasma treatment and atomic force microscopy (AFM), we performed a scaling analysis of the modified surfaces yielding effective Hurst exponents (H ≃ 0.77 ± 0.02 (PP), ≃0.75 ± 0.02 (PTFE), and ≃0.83 ± 0.02 (PCL)), for the one-dimensional profiles, corresponding to the transversal sections of the surface, by averaging over all possible profiles. The surface fractal dimensions are given by ds = 3 − H, corresponding to ds ≃ 2.23, 2.25, and 2.17, respectively. We present a simple method to obtain the surface area from the AFM images stored in a matrix of 512 × 512 pixels. We show that the considerable increase found in the surface areas of the treated samples w.r.t. to the non-treated ones (43% for PP, 85% for PTFE, and 25% for PCL, with errors of about 2.5% on samples of 2 µm × 2 µm) is consistent with the observed increase in the length scales of the fractal regime to determine H, typically by a factor of about 2, extending from a few to hundreds of nanometres. We stipulate that the intrinsic roughness already present in the original non-treated material surfaces may serve as ‘fractal’ seeds undergoing significant height fluctuations during plasma treatment, suggesting a pathway for the future development of advanced material interfaces with large surface areas at the nanoscale.

Roman, H., Cesura, F., Rabia, M., Levchenko, I., Alexander, K., Riccardi, C. (2024). The fractal geometry of polymeric materials surfaces: surface area and fractal length scales. SOFT MATTER, 20(14), 3082-3096 [10.1039/D3SM01497E].

The fractal geometry of polymeric materials surfaces: surface area and fractal length scales

Cesura, F;Riccardi, C
2024

Abstract

Using three common polymeric materials (polypropylene (PP), polytetrafluoroethylene (PTFE) and polycaprolactone (PCL)), a standard oxygen-plasma treatment and atomic force microscopy (AFM), we performed a scaling analysis of the modified surfaces yielding effective Hurst exponents (H ≃ 0.77 ± 0.02 (PP), ≃0.75 ± 0.02 (PTFE), and ≃0.83 ± 0.02 (PCL)), for the one-dimensional profiles, corresponding to the transversal sections of the surface, by averaging over all possible profiles. The surface fractal dimensions are given by ds = 3 − H, corresponding to ds ≃ 2.23, 2.25, and 2.17, respectively. We present a simple method to obtain the surface area from the AFM images stored in a matrix of 512 × 512 pixels. We show that the considerable increase found in the surface areas of the treated samples w.r.t. to the non-treated ones (43% for PP, 85% for PTFE, and 25% for PCL, with errors of about 2.5% on samples of 2 µm × 2 µm) is consistent with the observed increase in the length scales of the fractal regime to determine H, typically by a factor of about 2, extending from a few to hundreds of nanometres. We stipulate that the intrinsic roughness already present in the original non-treated material surfaces may serve as ‘fractal’ seeds undergoing significant height fluctuations during plasma treatment, suggesting a pathway for the future development of advanced material interfaces with large surface areas at the nanoscale.
Articolo in rivista - Articolo scientifico
plasma, etching, fractals, surfaces, polymers
English
23-gen-2024
2024
20
14
3082
3096
open
Roman, H., Cesura, F., Rabia, M., Levchenko, I., Alexander, K., Riccardi, C. (2024). The fractal geometry of polymeric materials surfaces: surface area and fractal length scales. SOFT MATTER, 20(14), 3082-3096 [10.1039/D3SM01497E].
File in questo prodotto:
File Dimensione Formato  
10281-458940_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/458940
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact