In Active Current Limiter for HS circuits adopted in Automotive applications, stability is strongly affected by SC cases. Such several possible SC cases depend on the specific SC situations occurring in the system and, then, present different electrical conditions, for instance with inductive load from 0µH to 20µH. These SC events result in large load current step producing large current overshoot, which could damage the overall system. In this thesis an Active Current Limiter Circuit (ACLC) optimization is presented. The optimization procedure is based on an ACLC behavioral model, followed by the transistor level implementation design and then by the electrical results to experimentally demonstrate the reached improvements. The behavioral model is developed in the MATLAB and Simulink environment. The choice of using a behavioral model allows to replace part of the studied transistor level circuit with MATLAB blocks representing analytical transfer functions. The characteristic times of the zeros and poles of the transfer functions are the optimization parameters, as they are variables which can be handled through loop control statements in MATLAB scripts. Through the behavioral environment a coarse design optimization is performed, while fine optimization is later performed at transistor level. The proposed approach reduces design time compared to a full transistor level design procedure. Once the behavioral model qualitatively fits the transistor level model and it is considered properly reliable, any optimization algorithm can be used in the MATLAB environment. As challenge in this optimization there is the need of finding an optimization suitable for all a circuit topology and not only for a specific circuit design. A generic ACLC topology will be presented and during the optimization implementation as proof of feasibility several specific application will be taken into account to find a solution suitable for all the design cases. The behavioral optimization shows how control-loop stability can be improved through the parametric study of the loop frequency response and can be optimized by the implementation of an additional zero in the transfer function which represent the ACLC circuit To implement the optimization in the realistic transistor level circuit, a simple and extremely efficient solution (namely the Split & Filter (S&F) technique) allows to limit the overshoot during transient response for all the studied SC events topology. The technique is applied to a 350 nm BCD implementation and experimentally demonstrates that for the most critical cases (i.e. with the lowest Phase-Margin) PM increases from 44° to 57° reducing overshoot from 61% to 30% and decreasing peak current value, from 38.7 A to 29.5 A, without overcompensating the less inductive short-circuit cases, mitigating the system load dependence. Technique robustness is validated by extended simulations with PVT corners settings. A second technique, named Pull-Down Boost, has been studied and presented in this work in addition to the Split & Filter version.
Nei limitatori di corrente attivi per circuiti High Side (HS) usati in applicazioni automotive, la stabilitá é fortemente influenzata dai casi di corto circuito. Questi diversi casi di corto circuito dipendono dalla specifica situazione che puó accadere nel sistema e quindi, presentano diverse condizioni dal punto di vista elettrico, per esempio, possono avere carico induttivo da 0µH a 20µH. Questi eventi di corto circuito hanno come risultato un grande gradino di corrente che produce un grande overshoot di corrente, che potrebbe danneggiare l’intero sistema. In questa tesi viene presentata l’ottimizzazione di un circuito di limitazione di corrente attivo (ACLC). La procedura di ottimizzazione é basata su un modello comportamentale dell’ACLC ed é seguita dalla progettazione dell’implementazione a livello transistor e da risultati sperimentali che dimostrano i miglioramenti raggiunti. Il modello comportamentale é sviluppato nell’ambiente MATLAB Simulink. La scelta di usare un modello comportamentale permette di sostituire parti del circuito in analisi realizzato a livello transistor con blocchi MATLAB che rappresentano funzioni di trasferimento analitiche. I tempi caratteristici di poli e zeri della funzione di trasferimento sono i parametri di ottimizzazione, poiché sono variabili che possono essere gestiti da statement di loop di controllo di programmi MATLAB. Attraverso l’ambiente comportamentale viene fatta una ottimizzazione grossolana del progetto, mentre un’ottimizzazione piu fine é svolta in un successivo momento sul circuito a livello transistor. L’approccio proposto riduce i tempi di progettazione rispetto a una procedura di design completamente svolta a livello transistor. Una volta che il modello comportamentale riproduce qualitativamente il modello a livello transistor ed é considerato propriamente affidabile, qualsiasi algoritmo di ottimizzazione puó essere usato nell’ambiente MATLAB. La sfida di questa ottimizzazione é il bisogno di trovare un’ottimizzazione che si adatti a qualsiasi topologia di circuito e non solo ad uno specifico design. Verrá presentata una generica topologia di ACLC e durante l’implementazione dell’ottimizzazione, saranno considerate diverse applicazioni specifiche come prova di realizzabilitá per trovare una soluzione adattabile ad ogni caso di design. L’ottimizzazione comportamentale dimostra come la stabilitá dell’anello di controllo possa essere migliorara attraverso uno studio parametrico della risposta in frequenza ad anello aperto e possa essere ottimizzata attraverso l’implementazione di uno zero addizionale nella funzione di trasferimento che rappresenta l’ACLC. Per implementare l’ottimizzazione nel circuito reale a livello transistor, una soluzione estremamente semplice ed efficiente (chiamata tecnica Split & Filter, S&F) permette di limitare l’overshoot durnate la risposta in transiente per tutte le topologie di evento di corto circuito che sono state studiate. La tecnica é applicata a una implementazione in tecnologia BCD a 350nm e dimostra sperimentalmente che per i casi piu critici (quelli con minor margine di fase, PM), il PM aumenta da 44° a 57°, riducendo l’overshoot dal 61% a 30% e decrementando il valore della corrente di picco da 38.7° a 29.5°, senza sovracompensare i casi di corto circuito meno induttivi, mitigando la dipendenza dal carico del sistema. La robustezza della tecnica é comprovata da simulazioni PVT. Una seconda tecnica, chiamata Pull-Down Boost, é stata studiata e sará presentata in questo lavoro in aggiunta alla versione Split & Filter.
(2024). Current Limiter Stability Optimization for High-Side Power Switches in Automotive Applications. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Current Limiter Stability Optimization for High-Side Power Switches in Automotive Applications
GRATTACASO, FRANCESCO
2024
Abstract
In Active Current Limiter for HS circuits adopted in Automotive applications, stability is strongly affected by SC cases. Such several possible SC cases depend on the specific SC situations occurring in the system and, then, present different electrical conditions, for instance with inductive load from 0µH to 20µH. These SC events result in large load current step producing large current overshoot, which could damage the overall system. In this thesis an Active Current Limiter Circuit (ACLC) optimization is presented. The optimization procedure is based on an ACLC behavioral model, followed by the transistor level implementation design and then by the electrical results to experimentally demonstrate the reached improvements. The behavioral model is developed in the MATLAB and Simulink environment. The choice of using a behavioral model allows to replace part of the studied transistor level circuit with MATLAB blocks representing analytical transfer functions. The characteristic times of the zeros and poles of the transfer functions are the optimization parameters, as they are variables which can be handled through loop control statements in MATLAB scripts. Through the behavioral environment a coarse design optimization is performed, while fine optimization is later performed at transistor level. The proposed approach reduces design time compared to a full transistor level design procedure. Once the behavioral model qualitatively fits the transistor level model and it is considered properly reliable, any optimization algorithm can be used in the MATLAB environment. As challenge in this optimization there is the need of finding an optimization suitable for all a circuit topology and not only for a specific circuit design. A generic ACLC topology will be presented and during the optimization implementation as proof of feasibility several specific application will be taken into account to find a solution suitable for all the design cases. The behavioral optimization shows how control-loop stability can be improved through the parametric study of the loop frequency response and can be optimized by the implementation of an additional zero in the transfer function which represent the ACLC circuit To implement the optimization in the realistic transistor level circuit, a simple and extremely efficient solution (namely the Split & Filter (S&F) technique) allows to limit the overshoot during transient response for all the studied SC events topology. The technique is applied to a 350 nm BCD implementation and experimentally demonstrates that for the most critical cases (i.e. with the lowest Phase-Margin) PM increases from 44° to 57° reducing overshoot from 61% to 30% and decreasing peak current value, from 38.7 A to 29.5 A, without overcompensating the less inductive short-circuit cases, mitigating the system load dependence. Technique robustness is validated by extended simulations with PVT corners settings. A second technique, named Pull-Down Boost, has been studied and presented in this work in addition to the Split & Filter version.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_789138.pdf
accesso aperto
Descrizione: Current Limiter Stability Optimization for High-Side Power Switches in Automotive Applications
Tipologia di allegato:
Doctoral thesis
Dimensione
8.8 MB
Formato
Adobe PDF
|
8.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.