Supernovae (SNe) are among the most energetic events in the universe still far from being fully understood. An early and prompt detection of neutrinos is a one-time opportunity for the realization of the first multi-messenger observation of these events. In this work, we present the prospects of detecting neutrinos produced before (pre-SN) and during a SN while running an advanced cryogenic detector. Recent advances in the cryogenic detector technique and the discovery of coherent elastic neutrino-nucleus scattering offer a wealth of opportunities in neutrino detection. The combination of the excellent energy resolution of this experimental technique, with the high cross section of this detection channel and its equal sensitivity to all neutrino flavors, enables the realization of highly sensitive neutrino telescopes of the size of a few tens of cm, as the newly proposed RES-NOVA experiment. We present a detailed study on the detection promptness of pre-SN and SN neutrino signals, with direct comparisons among different classes of test statistics. While the well-established Poisson test offers in general best performance under optimal conditions, the nonparametric Recursive Product of Spacing statistical test (RPS) is more robust for triggering astrophysical neutrino signals with no specific prior knowledge. Based on our statistical tests the RES-NOVA experiment is able to identify SN neutrino signals at a 15 kpc distance with 95% of success rate, and pre-SN signal as far as 450 pc with a pre-warn time of the order of 10 s. These results demonstrate the potential of RPS for the identification of neutrino signals and the physics reach of the RES-NOVA experiment.

Eller, P., Ferreiro Iachellini, N., Pattavina, L., Shtembari, L. (2022). Online triggers for supernova and pre-supernova neutrino detection with cryogenic detectors. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022(10) [10.1088/1475-7516/2022/10/024].

Online triggers for supernova and pre-supernova neutrino detection with cryogenic detectors

Pattavina L.;
2022

Abstract

Supernovae (SNe) are among the most energetic events in the universe still far from being fully understood. An early and prompt detection of neutrinos is a one-time opportunity for the realization of the first multi-messenger observation of these events. In this work, we present the prospects of detecting neutrinos produced before (pre-SN) and during a SN while running an advanced cryogenic detector. Recent advances in the cryogenic detector technique and the discovery of coherent elastic neutrino-nucleus scattering offer a wealth of opportunities in neutrino detection. The combination of the excellent energy resolution of this experimental technique, with the high cross section of this detection channel and its equal sensitivity to all neutrino flavors, enables the realization of highly sensitive neutrino telescopes of the size of a few tens of cm, as the newly proposed RES-NOVA experiment. We present a detailed study on the detection promptness of pre-SN and SN neutrino signals, with direct comparisons among different classes of test statistics. While the well-established Poisson test offers in general best performance under optimal conditions, the nonparametric Recursive Product of Spacing statistical test (RPS) is more robust for triggering astrophysical neutrino signals with no specific prior knowledge. Based on our statistical tests the RES-NOVA experiment is able to identify SN neutrino signals at a 15 kpc distance with 95% of success rate, and pre-SN signal as far as 450 pc with a pre-warn time of the order of 10 s. These results demonstrate the potential of RPS for the identification of neutrino signals and the physics reach of the RES-NOVA experiment.
Articolo in rivista - Articolo scientifico
core-collapse supernovae; neutrino astronomy; neutrino detectors; supernova neutrinos;
English
2022
2022
10
024
open
Eller, P., Ferreiro Iachellini, N., Pattavina, L., Shtembari, L. (2022). Online triggers for supernova and pre-supernova neutrino detection with cryogenic detectors. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022(10) [10.1088/1475-7516/2022/10/024].
File in questo prodotto:
File Dimensione Formato  
10281-457651_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 956.19 kB
Formato Adobe PDF
956.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/457651
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
Social impact