This work describes the methodology used to develop a new glass-composition geothermometer by multiple linear least-squares regression analysis of experimental data available in literature. The geothermometer is applicable to natural olivine-bearing glassy samples quenched at one atmosphere. The calibration data set includes a total of 543 anhydrous experiments performed at one atmosphere which produced olivine coexisting with glass (± other phases). The accuracy of the geothermometer has been verified using an independent set of randomly selected one atmosphere anhydrous experimental samples external to the calibration data set. The new proposed equation reads: T(°C) = 1054.1±6.5 + (1458.0±23.5)(XMgO)liq – (267.1±45.8)(XCaO)liq + (116.3±30.9)(XNa2O + XK2O)liq, where the terms such as (XMgO)liq represent the cation fraction of MgO in the liquid. The new geothermometer is able to reproduce the calibration temperatures within a standard error of estimate (SEE) of ±23° C and to predict the temperatures for the test data set with a SEE of ±25° C. The proposed equation, when compared to previous models, gives the lowest systematic error. Moreover, we mathematically demonstrate that the comparison of the slope and the intercept parameters of the regression line against the 1:1 line leads to correct evaluation of the model only when a regression of observed or measured (in the y-axis as dependent variable) vs. predicted or calculated (in the x-axis as independent variable) is used.

Fabbrizio, A., Spillar, V. (2020). Methodology to derive well-calibrated thermometers: a new glass-composition geothermometer for olivine-bearing glassy samples at one atmosphere. ANNALS OF GEOPHYSICS, 63(4), 1-17 [10.4401/AG-8188].

Methodology to derive well-calibrated thermometers: a new glass-composition geothermometer for olivine-bearing glassy samples at one atmosphere

Fabbrizio, A
Primo
;
2020

Abstract

This work describes the methodology used to develop a new glass-composition geothermometer by multiple linear least-squares regression analysis of experimental data available in literature. The geothermometer is applicable to natural olivine-bearing glassy samples quenched at one atmosphere. The calibration data set includes a total of 543 anhydrous experiments performed at one atmosphere which produced olivine coexisting with glass (± other phases). The accuracy of the geothermometer has been verified using an independent set of randomly selected one atmosphere anhydrous experimental samples external to the calibration data set. The new proposed equation reads: T(°C) = 1054.1±6.5 + (1458.0±23.5)(XMgO)liq – (267.1±45.8)(XCaO)liq + (116.3±30.9)(XNa2O + XK2O)liq, where the terms such as (XMgO)liq represent the cation fraction of MgO in the liquid. The new geothermometer is able to reproduce the calibration temperatures within a standard error of estimate (SEE) of ±23° C and to predict the temperatures for the test data set with a SEE of ±25° C. The proposed equation, when compared to previous models, gives the lowest systematic error. Moreover, we mathematically demonstrate that the comparison of the slope and the intercept parameters of the regression line against the 1:1 line leads to correct evaluation of the model only when a regression of observed or measured (in the y-axis as dependent variable) vs. predicted or calculated (in the x-axis as independent variable) is used.
Articolo in rivista - Articolo scientifico
Calibration; Equation; Linear regression; Model; Olivine-glass geothermometer; Temperature; Test data;
English
2020
63
4
1
17
DM436
open
Fabbrizio, A., Spillar, V. (2020). Methodology to derive well-calibrated thermometers: a new glass-composition geothermometer for olivine-bearing glassy samples at one atmosphere. ANNALS OF GEOPHYSICS, 63(4), 1-17 [10.4401/AG-8188].
File in questo prodotto:
File Dimensione Formato  
Fabbrizio-2020-Ann Geophys-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/457151
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
Social impact