We construct a nonconforming virtual element method for the approximation of singular solutions to isotropic linear elasticity problems on polygonal domains. Standard nonconforming virtual element spaces are enriched with suitable singular functions. The enrichment is based on the nonconforming structure of the discrete spaces and not on partition of unity techniques. We prove optimal convergence and assess numerically the theoretical results of the method. The proposed scheme naturally paves the way for an efficient linear elastic fracture solver.

Artioli, E., Mascotto, L. (2024). Enriched virtual elements for plane elasticity with corner singularities. COMPUTATIONAL MECHANICS, 73(6), 1439-1454 [10.1007/s00466-023-02418-4].

Enriched virtual elements for plane elasticity with corner singularities

Mascotto, L
2024

Abstract

We construct a nonconforming virtual element method for the approximation of singular solutions to isotropic linear elasticity problems on polygonal domains. Standard nonconforming virtual element spaces are enriched with suitable singular functions. The enrichment is based on the nonconforming structure of the discrete spaces and not on partition of unity techniques. We prove optimal convergence and assess numerically the theoretical results of the method. The proposed scheme naturally paves the way for an efficient linear elastic fracture solver.
Articolo in rivista - Articolo scientifico
65N12; 65N15; 65N30; Extended Galerkin method; Linear elasticity; Polygonal mesh; Singular function; Virtual element method;
English
30-nov-2023
2024
73
6
1439
1454
reserved
Artioli, E., Mascotto, L. (2024). Enriched virtual elements for plane elasticity with corner singularities. COMPUTATIONAL MECHANICS, 73(6), 1439-1454 [10.1007/s00466-023-02418-4].
File in questo prodotto:
File Dimensione Formato  
Artioli-2024-Computational Mechanics-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 671.5 kB
Formato Adobe PDF
671.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/456898
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact