The Virtual Element Method (VEM) for the elasticity problem is considered in the framework of the Hu-Washizu variational formulation. In particular, a couple of low-order schemes presented in [1], are studied for quadrilateral meshes. The methods under consideration avoid the need of the stabilization term typical of the VEM, due to the introduction of a suitable projection on higher-order polynomials. The schemes are proved to be stable and optimally convergent in a compressible regime, including the case where highly distorted (even non-convex) meshes are employed.

Cremonesi, M., Lamperti, A., Lovadina, C., Perego, U., Russo, A. (2024). Analysis of a stabilization-free quadrilateral Virtual Element for 2D linear elasticity in the Hu-Washizu formulation. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 155(1 February 2024), 142-149 [10.1016/j.camwa.2023.12.001].

Analysis of a stabilization-free quadrilateral Virtual Element for 2D linear elasticity in the Hu-Washizu formulation

Russo A.
2024

Abstract

The Virtual Element Method (VEM) for the elasticity problem is considered in the framework of the Hu-Washizu variational formulation. In particular, a couple of low-order schemes presented in [1], are studied for quadrilateral meshes. The methods under consideration avoid the need of the stabilization term typical of the VEM, due to the introduction of a suitable projection on higher-order polynomials. The schemes are proved to be stable and optimally convergent in a compressible regime, including the case where highly distorted (even non-convex) meshes are employed.
Articolo in rivista - Articolo scientifico
Convergence and stability analysis; Hu-Washizu formulation; Linear elasticity; Self-stabilized virtual elements; Virtual element method;
English
13-dic-2023
2024
155
1 February 2024
142
149
open
Cremonesi, M., Lamperti, A., Lovadina, C., Perego, U., Russo, A. (2024). Analysis of a stabilization-free quadrilateral Virtual Element for 2D linear elasticity in the Hu-Washizu formulation. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 155(1 February 2024), 142-149 [10.1016/j.camwa.2023.12.001].
File in questo prodotto:
File Dimensione Formato  
Cremonesi-2024-Comput Math Appl-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 584.83 kB
Formato Adobe PDF
584.83 kB Adobe PDF Visualizza/Apri
Cremonesi-2024-Comput Math Appl-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 441.16 kB
Formato Adobe PDF
441.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/456145
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact