We study the denoising and reconstruction of corrupted signals by means of AutoEncoder ensembles. In order to guarantee experts' diversity in the ensemble, we apply, prior to learning, a dimensional reduction pass (to map the examples into a suitable Euclidean space) and a partitional clustering pass: each cluster is then used to train a distinct AutoEncoder. We study the approach with an audio file benchmark: the original signals are artificially corrupted by Doppler effect and reverb. The results support the comparative effectiveness of the approach, w.r.t. the approach based on a single AutoEncoder. The processing pipeline using Local Linear Embedding, k means, then k Convolutional Denoising AutoEncoders reduces the reconstruction error by 35% w.r.t. the baseline approach.
Mio, C., Gianini, G. (2019). Signal reconstruction by means of Embedding, Clustering and AutoEncoder Ensembles. In Proceedings - IEEE Symposium on Computers and Communications (pp.976-981). IEEE [10.1109/ISCC47284.2019.8969655].
Signal reconstruction by means of Embedding, Clustering and AutoEncoder Ensembles
Gianini, G
2019
Abstract
We study the denoising and reconstruction of corrupted signals by means of AutoEncoder ensembles. In order to guarantee experts' diversity in the ensemble, we apply, prior to learning, a dimensional reduction pass (to map the examples into a suitable Euclidean space) and a partitional clustering pass: each cluster is then used to train a distinct AutoEncoder. We study the approach with an audio file benchmark: the original signals are artificially corrupted by Doppler effect and reverb. The results support the comparative effectiveness of the approach, w.r.t. the approach based on a single AutoEncoder. The processing pipeline using Local Linear Embedding, k means, then k Convolutional Denoising AutoEncoders reduces the reconstruction error by 35% w.r.t. the baseline approach.File | Dimensione | Formato | |
---|---|---|---|
Mio-2019-ISCC 2019-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.