We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of 100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M vir ≃ 1010, 1011, 1012, and 1013 M at z = 0 and two different ("violent" and "quiescent") assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit and validated against observations to verify that the solutions are robust - i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy "metabolism." The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-of-concept dark-matter-only test of the formation of a galactic halo with a z = 0 mass of M vir ≃ 1.7 × 1011 M by nine different versions of the participating codes is also presented to validate the infrastructure of the project.

Kim, J., Abel, T., Agertz, O., Bryan, G., Ceverino, D., Christensen, C., et al. (2014). The AGORA high-resolution galaxy simulations comparison project. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 210(1) [10.1088/0067-0049/210/1/14].

The AGORA high-resolution galaxy simulations comparison project

Madau P.;
2014

Abstract

We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of 100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M vir ≃ 1010, 1011, 1012, and 1013 M at z = 0 and two different ("violent" and "quiescent") assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit and validated against observations to verify that the solutions are robust - i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy "metabolism." The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-of-concept dark-matter-only test of the formation of a galactic halo with a z = 0 mass of M vir ≃ 1.7 × 1011 M by nine different versions of the participating codes is also presented to validate the infrastructure of the project.
Articolo in rivista - Articolo scientifico
cosmology: theory; dark matter; galaxies: evolution; galaxies: formation; hydrodynamics; methods: numerical;
English
24-dic-2013
2014
210
1
14
none
Kim, J., Abel, T., Agertz, O., Bryan, G., Ceverino, D., Christensen, C., et al. (2014). The AGORA high-resolution galaxy simulations comparison project. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 210(1) [10.1088/0067-0049/210/1/14].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/452991
Citazioni
  • Scopus 210
  • ???jsp.display-item.citation.isi??? 202
Social impact