Hyperlipidemia starts at a pediatric age and represents an unquestionable risk factor for cardiovascular disease. Modulation of the intestinal microbial ecosystem (IME), in principle, can ameliorate lipid profiles. In this study, we characterized the IME of children and adolescents with primary hyperlipidemia by analyzing fecal samples through 16S rRNA gene profiling (n = 15) and short chain fatty acid (SCFA) quantification (n = 32). The same analyses were also carried out on age-matched normolipidemic controls (n = 15). Moreover, we evaluated the modulatory effect of regular hazelnut intake (approximately 0.43 g of hazelnuts with skin per kg of body weight) on the IME of 15 children and adolescents with hyperlipidemia for eight weeks. We found alterations of numerous operational taxonomic units potentially associated with SCFA-producing bacteria and reductions in the fecal levels of acetate, butyrate and propionate in hyperlipidemic subjects. Furthermore, we observed that an eight-week hazelnut intervention may induce limited changes in fecal microbiota composition but can significantly modulate the fecal levels of predominant intestinal SCFAs, such as acetate. Finally, correlation analyses indicated that changes in lipidemic parameters are linked to modifications of the abundance of specific bacterial taxa, such as the families Lachnospiraceae and Ruminococcaceae and the genera Akkermansia, Bacteroides, Roseburia, and Faecalibacterium. This study suggests that children and adolescents with primary hyperlipidemia possess an altered IME. The promising results presented here support the need for future dietary interventions aimed at positively modulating the IME of hyperlipidemic subjects.

Gargari, G., Deon, V., Taverniti, V., Gardana, C., Denina, M., Riso, P., et al. (2018). Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS MICROBIOLOGY ECOLOGY, 94(5) [10.1093/femsec/fiy045].

Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake

Guglielmetti S.
2018

Abstract

Hyperlipidemia starts at a pediatric age and represents an unquestionable risk factor for cardiovascular disease. Modulation of the intestinal microbial ecosystem (IME), in principle, can ameliorate lipid profiles. In this study, we characterized the IME of children and adolescents with primary hyperlipidemia by analyzing fecal samples through 16S rRNA gene profiling (n = 15) and short chain fatty acid (SCFA) quantification (n = 32). The same analyses were also carried out on age-matched normolipidemic controls (n = 15). Moreover, we evaluated the modulatory effect of regular hazelnut intake (approximately 0.43 g of hazelnuts with skin per kg of body weight) on the IME of 15 children and adolescents with hyperlipidemia for eight weeks. We found alterations of numerous operational taxonomic units potentially associated with SCFA-producing bacteria and reductions in the fecal levels of acetate, butyrate and propionate in hyperlipidemic subjects. Furthermore, we observed that an eight-week hazelnut intervention may induce limited changes in fecal microbiota composition but can significantly modulate the fecal levels of predominant intestinal SCFAs, such as acetate. Finally, correlation analyses indicated that changes in lipidemic parameters are linked to modifications of the abundance of specific bacterial taxa, such as the families Lachnospiraceae and Ruminococcaceae and the genera Akkermansia, Bacteroides, Roseburia, and Faecalibacterium. This study suggests that children and adolescents with primary hyperlipidemia possess an altered IME. The promising results presented here support the need for future dietary interventions aimed at positively modulating the IME of hyperlipidemic subjects.
Articolo in rivista - Articolo scientifico
16S rRNA gene profiling; children; hazelnuts; intestinal microbiota; primary hyperlipidemia; short chain fatty acids;
English
2018
94
5
FIY045
reserved
Gargari, G., Deon, V., Taverniti, V., Gardana, C., Denina, M., Riso, P., et al. (2018). Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS MICROBIOLOGY ECOLOGY, 94(5) [10.1093/femsec/fiy045].
File in questo prodotto:
File Dimensione Formato  
Gargari-2018-FEMS Microbiol Ecol.pdf

Solo gestori archivio

Descrizione: Supplementary material
Tipologia di allegato: Other attachments
Licenza: Tutti i diritti riservati
Dimensione 671.82 kB
Formato Adobe PDF
671.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Gargari-2018-FEMS Microbiol Ecol-VoR.pdf

Solo gestori archivio

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/452879
Citazioni
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
Social impact