We prove congruences, modulo a power of a prime $p$, for certain finite sums involving central binomial coefficients $\binom{2k}{k}$, partly motivated by analogies with the well-known power series for $(\arcsin z)^2$ and $(\arcsin z)^4$. The right-hand sides of those congruences involve values of the finite polylogarithms $\pounds_d(x)=\sum_{k=1}^{p-1} x^k/k^d$. Exploiting the available functional equations for the latter we compute those values, modulo the required powers of $p$, in terms of familiar quantities such as Fermat quotients and Bernoulli numbers.

Tauraso, R., Mattarei, S. (2013). Congruences for central binomial sums and finite polylogarithms. JOURNAL OF NUMBER THEORY, 133(1), 131-157 [10.1016/j.jnt.2012.05.036].

### Congruences for central binomial sums and finite polylogarithms

#### Abstract

We prove congruences, modulo a power of a prime $p$, for certain finite sums involving central binomial coefficients $\binom{2k}{k}$, partly motivated by analogies with the well-known power series for $(\arcsin z)^2$ and $(\arcsin z)^4$. The right-hand sides of those congruences involve values of the finite polylogarithms $\pounds_d(x)=\sum_{k=1}^{p-1} x^k/k^d$. Exploiting the available functional equations for the latter we compute those values, modulo the required powers of $p$, in terms of familiar quantities such as Fermat quotients and Bernoulli numbers.
##### Scheda breve Scheda completa Scheda completa (DC)
Articolo in rivista - Articolo scientifico
binomial coefficient, congruence
English
2013
133
1
131
157
none
Tauraso, R., Mattarei, S. (2013). Congruences for central binomial sums and finite polylogarithms. JOURNAL OF NUMBER THEORY, 133(1), 131-157 [10.1016/j.jnt.2012.05.036].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/451188
• 33
• 31