To an algebraic variety equipped with an involution, we associate a cycle class in the modulo two Chow group of its fixed locus. This association is functorial with respect to proper morphisms having a degree and preserving the involutions. Specialising to the exchange involution of the square of a complete variety, we obtain Rost's degree formula in arbitrary characteristic (this formula was proved by Rost and Merkurjev in characteristic not two).

Haution, O. (2018). Involutions of varieties and Rost's degree formula. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018(745), 231-252 [10.1515/crelle-2016-0003].

Involutions of varieties and Rost's degree formula

Haution O.
2018

Abstract

To an algebraic variety equipped with an involution, we associate a cycle class in the modulo two Chow group of its fixed locus. This association is functorial with respect to proper morphisms having a degree and preserving the involutions. Specialising to the exchange involution of the square of a complete variety, we obtain Rost's degree formula in arbitrary characteristic (this formula was proved by Rost and Merkurjev in characteristic not two).
Articolo in rivista - Articolo scientifico
Degree formula, Segre class, Steenrod squares
English
2018
2018
745
231
252
reserved
Haution, O. (2018). Involutions of varieties and Rost's degree formula. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018(745), 231-252 [10.1515/crelle-2016-0003].
File in questo prodotto:
File Dimensione Formato  
Haution-2018-J Reine Angw Math-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 388.36 kB
Formato Adobe PDF
388.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/449120
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact