In this thesis, we extend the G-expectation theory to infinite dimensions. Such notions as a covariation set of G-normal distributed random variables, viscosity solution, a stochastic integral drive by G-Brownian motion are introduced and described in the given infinite dimensional case. We also give a probabilistic representation of the unique viscosity solution to the fully nonlinear parabolic PDE with unbounded first order term in Hilbert space in terms of G-expectation theory.

(2013). G - Expectations in infinite dimensional spaces and related PDES. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2013).

G - Expectations in infinite dimensional spaces and related PDES

IBRAGIMOV, ANTON
2013

Abstract

In this thesis, we extend the G-expectation theory to infinite dimensions. Such notions as a covariation set of G-normal distributed random variables, viscosity solution, a stochastic integral drive by G-Brownian motion are introduced and described in the given infinite dimensional case. We also give a probabilistic representation of the unique viscosity solution to the fully nonlinear parabolic PDE with unbounded first order term in Hilbert space in terms of G-expectation theory.
FUHRMAN, MARCO
Hilbert space, G-expectation, upper expectation, G-Brownian motion, G-stochastic integral, B-continuity, viscosity solution, Itô's isometry inequality, BDG inequality, fully nonlinear PDE, Ornstein-Uhlenbeck process
MAT/06 - PROBABILITA E STATISTICA MATEMATICA
English
11-giu-2013
Scuola di dottorato di Scienze
MATEMATICA PURA E APPLICATA - 23R
25
2011/2012
open
(2013). G - Expectations in infinite dimensional spaces and related PDES. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2013).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_734868.pdf

accesso aperto

Tipologia di allegato: Doctoral thesis
Dimensione 599.09 kB
Formato Adobe PDF
599.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/44738
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact