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1 Introduction

1.1 Aim and description of the work

This thesis is devoted to a study of the theory of GG-expectations in infinite
dimensions. The theory in finite dimensions was invented and developed by
Peng [17, 68, 69, 70, 71, 72], and it quickly attracted the interest of many
researchers. In the past few years a large number of papers was devoted to
GG -expectations, both developing the general theory and investigating new
applications.

Actually, G-expectation is a special case of a sublinear expectation (a
monotone, sublinear and constant preserving functional defined on a linear
space of random variables) which in many cases can be represented as
a supremum of a family of ordinary linear expectations. So, a sublinear
expectations can be seen as a tool to model uncertainty, when the actual
probabilistic model that governs a given phenomenon is not entirely known.
Also, this notion provides a robust way to measure a risk loss and it is
therefore of great interest in financial applications. G-expectations are
also of interest for their applications to the theory of partial differential
equations (PDEs for short), as they can be used to construct or represent
solutions to a large class of fully non-linear PDEs.

In spite of the fact that the theory of G -expectations is now considered
an important mathematical tool, so far no results have been proved in the
infinite dimensional framework. The present thesis is the first attempt
to fill this gap: starting from the finite dimensional case, in the present
work we are going to extend the theory of GG -expectations, and some of its
applications, to infinite dimensions.

Thus, the first aim of the present thesis is to introduce basic objects and
notions of the theory of G -expectations in a Hilbert space. A second aim
is the study of fully nonlinear parabolic PDEs in Hilbert spaces. There is
an extensive literature on PDEs in infinite dimensions (see, i.e. [, 5, 11,

, 31,32, 34, 56, 78]) but only a relatively small part is devoted to the
fully nonlinear case. Here, making use of G-expectations as a probabilistic



tool, we will study equations of the form:

(1)

w(T,x) = f(z).
We call this equation a G -PDE, because of the occurrence of the nonlinear
coefficient G. (G is a certain sublinear functional which is connected to a

1
G -expectation E by the formula G(-) = §E[<-X, X)|. The term A in the

PDE is a given generator of a Cj-semigroup (etA) : the occurrence of this
unbounded, not everywhere defined term is important for the applications,
but it requires to face additional difficulties.

The solution to equation (1) will be understood in the sense of viscosity
solutions. The theory of viscosity solutions for the finite dimensional case
now is well developed and the reader can consult, for instance, [0, 7, 23, 24].
Treating viscosity solutions in the infinite dimensions requires to overcome

{@u + (Ax,Dyu) + G(D2u) =0, tel0,T), zeH;

special difficulties (see, i.e., [25, 26, 27, 28, 29]).
Swiech (see [50, 78]) was the first author to include the “unbounded” term
(Azx, Dyuy in the second order PDE. Together with Kelome (see [55, 50])

he proved a comparison principle and existence and uniqueness results
for a nonlinear second order PDE. We will make use of their results on
uniqueness of the solution to equation (1). In order to prove existence
we will use a probabilistic representation which is entirely different from
the method of Kelome and Swi@ch. The probabilistic representation of the
solution to equation (1) is formally analogous to the classical case. To this
aim we consider the associated stochastic differential equation:

{dXTAXT—l-dBT, Te(tT] < [0,T]; 2)

Xt:xa

where, however, B, is a so called G -Brownian motion in the Hilbert space
H, i.e. a Brownian motion related to a G-expectation that we introduce
in an appropriate way.

The solution to equation (2) is the following process, formally analogue to
the Ornstein-Uhlenbeck process:

X, =X = elm 4y 4 JG(T_U)AdBU.
t



We will see that the formula wu(t,z) := E[f (X;x)] gives the required
representation of the unique viscosity solution to equation (1).

In the definition of X, we are naturally led to considering a stochastic
integral, which can be of the more general form

Of O(0) dB,.

So, some parts of the thesis will be devoted to the definition of the stochas-
tic integral with respect to a G -Brownian motion and the investigation of
related properties and results. This is a third aim of the present work,
of independent interest. In particular, special attention will be devoted
to the identifying a suitable class of integrand processes &, with values
in an appropriate space of linear operators that will be introduced to this
purpose.

We finally mention that some of the obtained results have already been pre-
sented at international workshops and conferences in Germany, Morocco,
France, Italy, Romania and Ukraine.

1.2 Plan and main results

In order to orient the reader, in this subsection we are going to describe
the contents of the chapters that follow, summarizing some of the most
important results.

It should be said at the outset that, although we will shortly recall some
notations and basic definitions, all the results in the present thesis are
new. The present work is not aimed at a complete exposition of theory of
GG -expectation and in particular it does not include known arguments and
proofs. Some parts of the standard, finite-dimensional part of the theory
admit a straightforward generalization to the infinite-dimensional case, but
most of the extensions need a completely new approach.

In chapter 2 we start our plan by introducing a class of functionals, gener-
ically denoted by the symbol G. In the finite dimensional theory the
functional G is defined starting from a given sublinear expectation E and
a random variable X by means of the formula:

G(4) = ZE[AX, )], 3
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and it follows easily that G is a continuous sublinear functional, admitting
the following representation:

G(A) = 1sup Tr[A - B]. (4)
2 Bex
The extension of these results to the infinite dimensional case requires some
effort. In particular, new issues arise concerning the continuity properties
of GG, as several topologies can be introduced on spaces of linear opera-
tors. We will start by introducing an appropriate notion of G -functional,
a sublinear functional continuous in the uniform topology. Then we will be
able to prove that, if defined on the subspace of compact symmetric linear
operators, it admits a representation of the form (4), for an appropriate
set of operators X. We will also prove that X is determined by G: more
precisely we will show thatY = ker G*, where G* is the Legendre trans-
form of GG. So, we will establish a one-to-one correspondence between a
G -functional G' and the set X.
We will then introduce the class of Hilbert space valued, G-normal dis-
tributed random variables X , which are related to a G -functional by for-
mula (3). Since the G-functional also admits the representation (4), we
will use the notation
X ~ NG(O7 E)n

and we will treat the set > as a covariance set for the random variable
X . This is justified by some other properties that will be established, for
instance the moment estimate

Cm * SUp Tr[Qm] S EHXHam < Cm " sSup (Tr[Q])m’
Qex Qex

or the fact that, if Z = SX where S is a bounded linear operator, then
Z ~ Ng(0,7) with a covariance set Xz = {SQS*|Q € ©}.

In Chapter 3 we will first recall some basic facts on the theory of viscosity
solutions in infinite dimensions, using the framework developed by Kelome
and Swiech (see [55, 50, 78]). The main result here is the following: if the
coefficient GG in equation (1) is a G -functional (as defined in the previous
chapter) then it satisfies all the conditions required in the theory of Kelome
and Swi@ch in order to have a uniqueness result for the viscosity solution
to equation (1).




In chapter 4 we describe one of the main concepts of the theory, the no-
tion of a (G -expectation, which is in fact a special case of a sublinear
expectation as introduced earlier in chapter 2. Generalizing the construc-
tion in Peng [72] we also introduce the notion of Hilbert space valued
(G -Brownian motion: it is the analogue of the classical Brownian motion
process, where in particular increments are G'-normal distributed. In or-
der to deal with some technical points (for instance, generalizations of the
Burkholder-Davis-Gundy inequality), we also need to develop an extension
of the theory of upper expectation as described in the paper of Denis, Hu
and Peng [30]. In particular we identify a space of Hilbert space valued
random variables, denoted HLZC); (Q) , where the upper expectation E and
the G-expectation E coincide. It is important for applications and actual
computations of G -expectations that that we are able to describe HL’C’; (Q)
as a space of random variables and not only as an abstract completion with
respect to an appropriate norm.

After these preparations, in this chapter we are in position to find a solution
to equation (1) in the special case A = 0, namely we prove that its (unique)
viscosity solution is just the function

u(t,z) = E[f(z + Br_y)].

The section “basic space constructions” in chapter 4 makes an essential con-
nection with the subsequent chapter 5 devoted to the stochastic integral.
The aim is to introduce a new Banach space of linear operators &, de-
noted L3, endowed with an appropriate norm H@H%g = Cs;elg Tr[2QP*| =

sug H@Ql/QH%Q(U’H). L3 will be shown to be the natural state space for
€

integrand processes in the stochastic integral with respect to G -Brownian
motion.

The definition of the stochastic integral with respect to the classical Brow-
nian motion with values in a Hilbert space is described, for instance, by
Da Prato and Zabczyk [32]. In chapter 5 we extend this construction to
the framework of G -expectation. We define a stochastic integral with re-
spect to GG-Brownian motion, including a description of the natural space
of integrand processes. In our case the classical 1t6 isometry has to be
replaced by an inequality. We also prove an extension of the Burkholder-
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Davis-Gundy inequality, a version of the stochastic Fubini theorem and
continuity properties of the stochastic convolution.

Finally in chapter 6 we introduce the generalized Ornstein-Uhlenbeck pro-
cess as the solution to equation (2) and we are able to provide an existence
result for the (unique) viscosity solution to equation (1), overcoming the
difficulties mentioned before related to the unbounded term (Ax, D, u).

1.3 Conclusions and comments

The present thesis is the first work on the G -expectation theory in infinite
dimensions.

The main aims were the extension of the theory of G-expectation to infi-
nite dimensions and the probabilistic representation of viscosity solutions
to some parabolic PDEs in a Hilbert space. In order to achieve these aims
we proved new results regarding the representation of G -functionals, the
construction and characterization of the space of integrand processes for a
stochastic integral with respect to the G-Brownian motion, the Ito isom-
etry (or rather inequality) and the Burkholder-Davis-Gundy inequalities.
Several extensions of the results presented in this thesis seem natural and
interesting. For instance, instead of G -Brownian motion, one can try to
define the notion of a cylindrical GG-Brownian motion or of a GG-martingale
in infinite dimensions. The corresponding theory of stochastic integration
needs to be developed and may lead to interesting applications. It is also
natural to consider and try to solve a more general PDE of the form

oru+ (Ax + F(x), Dyuy + G(H(x) - D> u- H*(x)) =0, tel0,T], z¢€
w(T,x) = f(z).

An easy conjecture is that the solution should be represented by a more gen-
eral stochastic differential equation of the obvious form; this would extend
our results beyond the case of the generalized Ornstein-Uhlenbeck process.
Finally, the abstract theory of stochastic evolution equations driven by G -
Brownian motion can be applied to stochastic partial differential equations
driven by the G-Brownian motion.
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2 Sublinear functionals and distributions

2.1 G-functional

The notion of G -functional we need in order to use some sublinear func-
tionals in infinite dimensions. Mainly it applies to the second order term
in the heat equation

{6tu+G(D?mu)—O, tel0,T), zeH; 5

u(T,z) = f(x).

Also, in the G-expectation theory G -functional plays a very important
role as a tool of characterization (G-normal distributed random variables.

So, let us consider H is a real separable Hilbert space and {e;,i = 1} be
an orthonormal basis on it.

Keeping the standard notations, define the following sets in this way:
L(H) := {A:H — H| A - linear, continuous in L(H)-topology} ;
K(H):={Ae L(H) | A - compact};

Ls(H) := {A e L(H)| A= A*} and Kg(H) := {A e KH)| A= A*}.

Definition 2.1. A monotone, sublinear, continuous (in the operator norm)
functional G : D c Lg(H) - R is said to be G -functional.
That is, G(-) is required to satisfy the following conditions:

A=A = G(A)=G(A).

2)G(A+A) <G(A) +G(A);

3)G(NA) = ANG(A), A= 0;

4)G is L(H) -continuous.

The following theorem is the analogous result from the finite-dimensional
case (see [72, Th.2.1]). Note that some proves of the results in this thesis
are just adjusted the finite dimensional case. There are some pieces that
can be easily kept, but there are some that have troubles when we pass
from infinite to finite dimensions. Naturally we will note if the some part
of the proof coincides with the proof in finite dimensions.

12



Theorem 2.1. Let X be a linear space.
F : X — R s a sublinear functional, i.e.
1) Flx +y) < F(x)+ F(y);
2) F(Ax) = AF(x), A=0.
Then there exists a family of linear functionals {fg :X—>R, fe @} , such
that:

F(zr) = Selelg fo(z), zeX (6)

Moreover, (a) If F is continuous = fy in (6) are continuous.
(b) If F' is a monotone, sublinear functional, that preserves con-
stants (such functional we call sublinear expectation)
= fy in (6) are linear expectations.

Proof.
In order to get (6) and the part (b) there are no essential differences with
a finite dimensional case (see [72, Th.2.1]). But there are some moments

which we will use to prove the part (a).

Let ) be a family of linear functionals { fo: X >R, 0¢€ @}, such that
F(z) = fo(z) for every z e X.

For fixed element = € X we define a set L := {ax, a € ]R}, which is a
subspace of X.

Define a mapping I : L — R in the following way [(ax) := aF(x), a€R.
It is clear that [ is linear on X .

Also I < F on L. In fact, if we take a > 0 then F(az) = aF(z) = I(az),
and F(—azx) = aF(—x) = —aF(x) = I(—ax).

By the Hahn-Banach (in analytic form) there exists a linear functional
f:X—>R,such that f=7on L and f < F on X. (*)
At the point z: F(z) = I(x) = f(x) =: fo(x) , where 6 depends of z.
Take the set © := {§ = f(z), = € X} and consider a functional

Fo(z) := sup fy(x).
0O

From the one hand, surely Fg(z) < F(x).
But from the other hand, for every z there exists § = 6(x), such that

F(.T)) - fﬂ(x)(x)7 but fﬂ(x)(x) < Sﬁlel(E)) fg(l‘) - F@(l‘)

It means that Fg coincides with F' on X, ie. F(x) =sup fy(z) Vze X.
0ecO

13



[t remains just to show (a):
Let F' be continuous, it follows that I is continuous on L, and f in (=)
is also continuous (and linear) on L.
So, we have that: f: X — R is linear ;
f ‘ ; 1s linear and continuous on the linear subspace L;

I : X — R is sublinear and continuous;

f < F onX
Then following the proof of the Hahn-Banach theorem in the classical form

(i.e., there exists a linear continuous functional g on X, such that g = f
on L, and |g| = |f]): following the proof of this theorem (see e.g. [(2,
Th.4]) in the same way (as with a functional ¢) we can construct a linear
continuous functional f, such that:

f:f on L, and ngon X.

From () it follows that: f =7 on L, and f on X.

Proceeding the same reasonings we can conclude that F(z) = sup f(z),
0e©

where {J‘N’g :X—> R, fe @} is a family of linear continuous functionals.
]

Definition 2.2. The von Neumann-Schatten classes of operators are de-
fined as follows:

Cp(H) := {Ae L(H) | ; [(Aej, el <o}, 1<p <o
O (H) := L(H). "

Introducing the norm for Ae Cy(H), 1<p<w:

1/
AL, := [1r(a- 4] 1< p < o0,
[Ale == 1AL
Also we know that (Cp(H),|-|c,), 1 <p < o is a Banach space

(see [75, 2.1]).

Remark 2.1. In the sequel we will call the classes C1(H) and C3(H) as
trace-class and Hilbert-Schmidt class of operators respectively, and
denote them in this way:

Ci(H) = Li(H) :== {Ae L(H) | Tr[(A - A)"?] < o};
Cy(H) = Ly(H) := {A e L(H) | Tr[A- A*] < o0}

14



Now we would like to give the representation of the G -functional defined
on the set of compact symmetric operators on H. Actually, we can’t
give the same representation result in the general case with the domain
of linear bounded operators. But afterwards we discuss about extension
G -functional on Lg(H).

Theorem 2.2. Let G : Kg(H) - R be a G -functional.
Then there exists the set > such that:

1)¥ c Cy(H);

29)VBeY = B=B*", B>0;

3)% is conver;

4)% is closed subspace of Ci(H) ;

1
5) G(A) = §%uIE)Tr[A-B], VAe Kg(H).

Proof.
For every sublinear continuous functional F' : K(H) — R according to
Th.2.1, there exist a family of linear continuous (in L(H)-topology) func-

tionals {fy, 0 € ©}, such that F(A) =sup fy(A), Ae K(H).
0cO

Let us fix § and consider f = fye L(K(H),R).

For x,y€H we define a bounded linear operator xt®y on H as follows:
(2 ®y)z:={z,y)x, ze H.
It is clear that rtk(z®y) =1, if v # 0, y # 0, and
Tifz@y] = 3 {(z®@y)ej,e;) = Zl<€j»y><ﬂf» ej) = (x,y), and
7=

j=>1
the norm |z @ y|ry := [z|u - Jyln, 1<p<oo.

The bilinear form L(z,y) := f(x ® y) satisfies

1L(z,y)| = |flz@y)] < |flowmym - Iz @ylm < [fluwem - lzlb - lyln,
So that, it is bounded.
But for every bounded bilinear form there exists a unique B € L(H) such

that L(z,y) = (Bx,y) (see [75, Th.1.7.1]).

It follows that f(x®y) ={(Bx,y) = {(x, B*y) = Tr[z ® B*y|

= Tr[(z®y)B],
because (r ® B*y)z = (z,B*yyx = {(Bz,yyx = (t®y)Bz.
So, we can conclude that f(A) = Tr[AB|, where A:=2Q®y. (*)

15



Denote F to be the set of all operators of finite rank on H.

But every A € F can be represented in the form A = )] a1 ® ¢;
j=1
(see [75, Th.1.9.3]), where (¢;) is uniquely determined sequence of the

real elements, and (v;), (¢;) are two orthonormal systems in H.
For this reason (=) holds for every Ae F.

In order to show that B e C1(H) we use the following lemma:

Lemma 2.1 (Ringrose, [75], Lm.2.3.7).
Let 1 <p<oo, and q be a conjugate exponent of p (i.e.

1
P
Then T € Cy(H) if and only if sup {‘ Tr[ST] | : SeF, ||, <

And in such a case the value of the supremum is equal to |T'|c, .

According to this lemma we get that
sup {| Ti[AB]| - BeF, |Ble, <1} < |f] < ;

So that for every A€ F we have f(A) = Tr[AB] , BeCi(H).

Both sides in this equality are L(H)-continuous, and since the set F is
dense in K(H), this implies that for every A € K(H) we have also
f(A) =Tr[AB]|, Be Ci(H).

In the case when A € Kg(H) therefore there exists By € Ci(H), such
that f(A) = Tr[ABo].

By + B;
Consider an operator B := % , which is symmetric and trace-class;
Hence:
A(By + B} 1 1
Tv[AB] = Tr[ ( o 0)] = S[AB) + 5 T[ABj)

1 1 1 1
= ST[ABy] + STe[ BoA'] = STe[ABy] + S Te[ByA]

1 1
=§ﬁM&p5ﬁM&}ﬂﬂmﬂzﬂm.
So we can conclude that for every A€ Kg(H) we have f(A) = Tr[AB],
B = B* € Cl(H)

Now let us take the following sublinear functional F(A) := 2 G(A), defined
on the set Kg(H).

16



Applying Th.2.1 we have
F(A) = sup fyp(A) = supTr[ABg] , Bg=B,eCi(H), 0 0;
[USS) [USS)

Hence there exists a set of operators {Bg, 0e @{ By = Bj e C’l(H)} , such

1

that G(A) = 5 Sup Tr[ABy|, A€ Ks(H).
0O

G is monotone. For this reason we can only take that By which are

positive: if z € H then (Byx,z)>0.
Indeed, by the definition of supremum we have that:

Ve>0 30=0.€0: %Tr[ABg] < G(A) <%Tr[ABg]+8- (#)

Assume that there exists a basis vector e;, such that (Bye;, e;) := 5. < 0.
then consider an operator Ay such that {(Agej,e;) =1y, j=1.

It is clear that Ay is symmetric and compact.

Also if Ay =0 yields G(Ay) = G(0) =0.

1 1
From (#) we have 559 < G(A) < 559 +e.
1
And passing to the limit ¢ — 0: gives G(A) = 5/60 < 0, a contradiction.

1
And finally it may be concluded that G(A) = 5 Sup Tr[ABy|, Ae Kg(H).
0e©

where operators {Bg , 0e @} satisfy required properties:
By = B; >0, BgECl(H).

And now we are going to finish the proof by the construction of the set >:

Let us define the following sets:
¥:={BeCi(H)| B=B">0};

Y =Yg ={BeX|Ve>0 %Tr[AB] < G(A) < %Tr[AB] +e};

Take ¥ := conv(Y/) (closure in Cp-norm).

Since sup Tr[ABg] = sup Tr[AB] = sup Tr[AB] L and Y CXc C1(H),
0O BeyY Bex

1
we can set G(A) := §supTr[A -B], YAe Kg(H).
BeX

Moreover, by a such construction one can see that G defines the Y -set
uniquely.
]

17



Remark 2.2. For every functional fp(A): L(H) - R, BeCi(H),
such that fp(A) = Tr|AB| we have fpe L(L(H),R).
Moreover the mapping B — fp defines an isometric isomorphism from

Ci(H) to (K(H))".

Proof.
We have AB e Cy(H) and Tr[AB]| = |AB|¢, < |Alc,|Blc,

(see [75, Th.2.3.10]).
So that, fg is a linear continuous functional.

Moreover, |fp| < ||Blc,;
But according to Lm.2.1:

|52 sup {| 75(4) |+ Ac . |Ale, <1}

—sup { | T[4B][: AcF, |4, <1} = Ble,;
whence it follows that | fg| = || B|c, -
[]

It is easy to see that if ¥ is a convex, closed (in Cj(H)-topology) set of
symmetrical, non-negative, trace-class operators, then functional

1
G(A) = éjsgug Tr[A- B] is a G-functional, Ae Kg(H).
€

Furthermore, we see that between G and X is settled a one-to-one corre-
spondence, such that from the one we can get another one: G < X.

1
Proposition 2.1. For the G -functional G(A) = —supTr[A- B| the set
Bex.
Y =kerG*. )

Proof.
0, BeX;
0, BECl(H) AN
According to the topological properties of > (closed, convex and nonempty
set) it follows that X is a proper, convex and lower semicontinuous set.
For every A e Kg(H) we have
G(A) = 1supTr[AB] 1 sup {Tr[AB] — f(B)} = 1f*(B),

2 Bex BeC) (H) 2
where f* is the Legendre transform of f.

Consider the indicator functional f(B) := {

18



We thus get 2G = f* and hence 2G* = f** = f by the Fenchel-Moreau
theorem.
Therefore ¥ = {Be | G*(B) = 0} = kerG*.

2.2 Some remarks regarding the extension of the
G -functional to Lg(H)

In general case the extension of G to the space Lg(H) (of linear, bounded
and symmetric operators) is not unique. To see it we consider such a

~ 1
functional G(A) := ésupTr[A Bl + p(A), Ae Lg(H);

Be¥
where p(A) = A ma>(<A) A, the maximal point of essential spectrum os(A),
EOBSS
which is defined as o..5(A) = {A€o(A) Ve >0 Fpeo(A) :

A —pl <e}.
That is 0.ss(A) consists of all unisolated points of the spectrum o(A).
If Ae Kg(H) yields that p(A) =0,

because in such a case every A € o(A) \ {0} is an isolated point,
i.e. A ¢ 0ess(A) (see [22, Claim 7.6)).

It follows that G(A) — G(A) = p(A) - Liaersny xsH) -

But in order to to be sure that é(A) is G -functional indeed we set the
following lemma:

Lemma 2.2. p(A) is a continuous, sublinear and monotone functional.

Proof.

Let p(A) = Ao and g € 0es5(A). Since A is self-adjoint then |A[| = |-
Now we perturb operator A by an operator B with a small norm ||B| < ¢.
Then |A + B| < |Ao| +¢. It means that essential spectrum A is within
the limits |A\g| + . What do the continuity of max of essential spectrum
A means in fact.

If Ao ¢ 0ess(A). Then by the spectral theorem (see [22, IX,Th.2.2]) op-

+00

erator A has the following representation A = { xdu(x), where p is a
—0Q0

spectral measure.
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Let Ao= | adu(z) and Ay = § xdu(x), sothat A= Ag+A;.
{[ o<} {{Ao|>=}

Then we have that Ag is such as described above, and A; is compact.

But as we have already seen that the essential spectrum does not change

by the compact perturbation, so it follows that p(A) = p(Ag) which is

continuous.

In the same way we deduce the sublinearity of p(A), which follows from
the sublinearity of the norm.

In order to obtain the monotonicity let A > B

Assume that the maximum of essential spectrum B is greater than the
maximum of essential spectrum A. Therefore that part of the spectrum
A which is greater of the maximum of essential spectrum B consists of only
with eigenvalues of finite multiplicity. Then we can decompose operator A
as follows A = Ay + Ay, where the spectrum A; is completely on the left
part from the maximum of essential spectrum B, and A; is a finite rank
operator. Then we can use the Weyl criterion (see [31, Lm.6.17]): there
exists an orthonormal sequence {z,}, such that |Bx, — Apz,| — 0,

where Ap is the maximum of essential spectrum B. It follows that
|l —— Mg (*)

Then for such a sequence {x,} we have that A;x, — 0, because opera-

tor A; has only finite number of the eigenvalues of finite multiplicity. Also
| Aol < Ap, because the spectrum Ay is on the left from Ag. Therefore
for enough large n we have |Az,| < Ap||x,|. And using (=) we can con-
clude that for enough large n | Ax,| < |Bz,|, which contradicts that
A>DB.

[

Now let us call a canonical extension of GG the following G -functional
on Lg(H):
According to Th.2.2 the given G defines X;
— — 1
For A e Lg(H) we can define G(A) = Gy(A) := §supTr[A - B], the

BeX
canonical extension of G .
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2.3 Sublinear expectation

In this chapter we discuss the notion of sublinear expectation. The ma-
terial mainly was taken from [72], which we have generalized to infinite
dimensional case.

Let (2, F, P) is an ordinary probability space and (X, ||x), (Y,||-|v) are
normed space.

Let us define the class of Lipschitz functions with a polynomial growth as
follows:

Cpip (%,Y) i= {0 : X = Y | (@) — (W)l

<C- (1 [l + Iyl) - 1o — ylx}
Cp.Lip (X) = Cp.Lip (X7 R) :
Definition 2.3. We define the class H" to be a linear space that satisfies
the following conditions:

1) If ce R then ceH;
2) Each € € H° is a random variable on a (Q, F,P);
3) ]f 517527"'75716%0 then @(617527"'7671)67_[0
for every ¢ e C,1ip(R").

Definition 2.4. Let us set
H={X:Q>X-rv on(QFP)|¢X)eH VieC,rpX)}.

Remark 2.3. If X e H then [|X|"eH’, m=>1

Proof.
The proof follows from the following elementary inequality:

Ixim = 1| < [1X1 = |- o (1 + 1xgpmt + gy
]

Definition 2.5. A functional E : H" — R is called a sublinear expec-
tation if it satisfies the following conditions:

1) Monotonicity: if X =Y then E[X]>E[Y];

2) Constant preserving: ceR then Elc| = c;

3) Sub-additivity: E[X + Y] <E[X] +E[Y];

4) Positive homogeneity: X >0 then E[MNX] = ME[X].

A triple (Q2,H,E) we shall call a sublinear expectation space.
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Definition 2.6. A functional Fx[p] := E[p(X)] is said to be a distri-
bution of X e H, for e C,ri(X).

Proposition 2.2. (Some elementary properties of E )
1)  ElaX]=a"E[X]+a E[-X], (a =at — a) ;
2.a) —E[X]<E[-X];

2.b) |E[X]| <E[X]],
2.c) E[Z] -E[X]<E[Z - X];

2.d) |E[Z]-E[X]| < |E[Z - X]|<E[|Z-X
3.a) X=>0= E[X]=>
3.b) X <0= E[X]<
4)  A<0 = E[MX]=)E[X];
5.0) ceR = E[X + (]
5.0) Y :E[Y]=E[-Y]
5.¢c) Y :E[Y]=E[-Y]

0 o E[X + Y] = E[X];
= E[X +aY]=E[X]+ «E[Y];

Proof.

All these properties are trivial consequences of the definition of the sublin-
ear expectation, but we put some notes to be more precise.

1) Obvious.

2) Follows from Def.2.5, 3);

And [E[X]| < —E[-X] < E[X] < E[|X]].

3) Follows from Def.2.5,1).

Prop.2.2,2) of.2.
4) EDX] = —E[-ax] PR AR[X].
Prop.2.2,4), Def.2.5,4) Prop.2.2,2)
5), (¢) Ya E[aY] = aE[Y] > —aE[-Y];

ElaY] = o'E[Y]+ o E[-Y] = E[Y] + o E[Y] = a E[Y];
E[X + Y] < E[X] + E[a] = E[X] + oE[Y] < E[X] — oE[-Y]
< E[X + aY];
So that E[X + aY] = E[X] + «E[Y].
[]

Remark 2.4. Note the following false implications for a sublinear expec-
tation:

E[X +Y]=E[X] = E[Y]=0 = E[-Y]=0.
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Proposition 2.3 (Cauchy-Bunyakovsky—Schwarz inequality).
Let XY € HY, then

E[XY] < (E[x?] -E[YQ]);.

Proof.
The proof is trivial and based on the classical CBS inequality and on

representation theorem for sublinear functional Th.2.1:
1

E[XY] = sup By[XY] < sup (By[X?] - By[1?])’
0O 0O

=S 0,€06 0,€0

— (B[x?] -E[Y?])"

]

= {SUP (EG[XZ] .E(,[Y?])}é - {Sup 0[] o E%[yﬂ}é

N[

2.4 (G -normal distribution

We again refer us to Peng [72] in order to introduce a notion of the G-
normal distribution. All the definitions can be carried just from the 1-
dimensional case to the infinite dimensional case.

Note that in this chapter and later on we imply that all the used random
variables are defined on the sublinear expectation space (€2, H,E).

Definition 2.7.
We say that random variables X and Y have identical distribution
and denote X ~'Y if their distributions coincide,

i.e., for every @€ C,rip(H) E[p(X)] =E[e(Y)].

We say that random variables Y 1is itndependent from random variable X

and denote Y 1L X if they satisfy the following equality:
E[¢(X,Y)] = E|E[¢(z.Y)],_|. ¢ Cpup(H=H).

z=X 1"’

Remark 2.5. Peng has already mentioned that Y 1 X does not imply
that X 1LY (see [72, Rem.3.12)).
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In the our turn when Y L X we put some obvious properties which we
shall use later:

1) Elp1(X) + 02(Y)] = Bl (X)] + E[pa(Y)], € Cprip(H).

2) E[XY] = E[E[x, Y]x:X] - E[)ﬁ E[Y]+ X~ -E[—Y]]
=E[X*]-E[Y]"+E[-XT]-E[Y] +E[X |- E[-Y]"+E[-X"]-E[-Y]".
Definition 2.8. Random wvariable X on the (Q,H,E) is said to be G -

normal distributed if for every X which is and independent copy of X
(i.e. has identical distribution):

aX +bX ~ a2+ b? X, where a,b> 0.
Let us consider a G -functional defined on the Kg(H) in such a way:

G(A) = SE[(AX, X)] @

In fact, it is clear that the sublinear expectation provides the fulfillment of
all G'-functional’s properties.

Assume that X is a G -normal distributed random variable with respect
to the sublinear expectation E, and G(-) is defined in (7).

Later (Th.4.2 ) we will see that for every G-functional G(-) there exists
GG -normal distributed random variable X and a sublinear expectation E,

- 1~ ~ ~
such that G(A) = §]E[<AX,X>].

In view of such fact we shortly make a following notation
X ~ Ng(0,%).

According to Prop.2.1 GG defines a Y -set, which we will call a covariance
set, about what we will discuss more precisely in the chapter 2.5.

Remark 2.6. If random variables have the same distribution then their
G -functionals coincide, i.e.: if X ~Y ~ Ng(0,%) then Gx =Gy .

Proof. .
Gx(A) = 5 Sup Tr[A- B] = Gy (A).

BeY
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Proposition 2.4. For a G -normal distributed random variable X ~ Ng(0,%)
we have the following estimation of the moments for m > 1:

m 2m i
Con - Zl;g Tr[Q ] < ]E[HXHH ] <C, - Zlig (Tr[@]) :

where ¢, are real constants dependent just of m .
In particular, if m =1 then c, =1 and E[|X|}] =supTr[Q].
QeXx

Proof.
Fix Qe X andlet {)\;, i >1} be eigenvalues of Q.
Consider a gaussian measure p:= Ng.

Then according to Th.2.1 we have

E[| X" = sup Eq[|X["] = Supg\l‘\QmM(dx)- (+)

QeX QeX
Define J,, := § |z[>"u(dz) and F(e) := {3l u(dz).

H H
Then F™(g) = {esl. |2“T|—m,u(dx)

H
And therefore J,, = 2mF(m)(O). (%)
Take € small, namely ¢ < mkln )\ , sSo we have:
F(e) = §exl u(de) = T S e Ny, (dz) = ] S ezmk e”k dx
H k=1 —o0 k=1 -0

T e L Euler-Poisson integral
N 1 x - SO g 2\
— kl:[l _S;O me k/(l Ek/\k) dx = H \/277/\k 1—6kk)\k \/7?

- - = ([a-a0) - [det(l -] .

k=1

SIS
L\')\»—A

Recall the following elementary formula

(I15) =11 fk+f1(nfk)’= [ fe+ fify T1 At ihs (115

k>1 k>2 k>2 1 k>1 k>3 k>1
=TT fr o b =TT /i B T fe+- =11 fe Z
fl k>1 f2 k>1 f3 k>1 k>1 k>1 fk:

25



/
1
2

Therefore F'(e (( [T(1—epAe ) )
k>1
1 3 — Ak
S (1 —exA 1 —epAz) - —_—
2( K k)) kl;ll( K k) 151 1— 5k)\k
1 3 A 1
i“ ) Ly 2 Ly reae.
k=1

S l—ah 25
——

=:gx(€)
We define G(e) := >, F(e)gi(e) .
k=1
Then let us compute the m- th derivative of G, we have

Gm(e) = 3 (F(e)gu(e))™ 22()<mﬁﬁa

k=1 k=1 j=0

) (p) _ L v = (A L v
since g, (¢) (1_5k)\k) (k (1—5k)\k)2>

A2 (p—2) pNan
= (2\p - — — ... =7 k |, ot
< - an)? P — et — P9 OF
1 5 (m—1)! _
then FM(0) == 3 M FO(0) g (0)
2= §j=0 J
(m —1)! m=t FUN(0) o (m—1)! m=L FO)(0) )
= . : . ) Vi : QMY
1
Since F(0) =1 it follows that FM(0) = 3" Tr|Q].

Hence ¢ - Tr[Q'] < FW(0) < ¢ - Tr[Q]l.

To finish the proof we use the induction method: |
Let for all j <m required estimation c¢; - Tr[Qj] < FI(0) < ¢ -Tr[Q]]
holds.

Since Tr[Qm] < Tr[Qj]Tr[Qm_j] < Tr[Q]jTr[Qm_j] < Tr[Q]m,
we have

e - Te[Q™] < FU™(0) < ¢ - Tr[Q]™

But according to (*) and (=) this gives us what we need.
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Remark 2.7. If we consider a canonical extension on Lg(H) for a such

1
particular G(-) = §E[< - X, X)], there emerges a question if we are able
to show that such G satisfies the representation given in Th.2.2,

1
i.e. 3 certain set ¥, s.t. G(A) = EsupTr[A -B|, AeLg(H)?
BeX

According to (2.2) in the general case we do not have uniqueness.
But, it is clear that for every A € Lg(H) there exist A, € Kg(H) such

that [(AX, X)—(4,X, X)| —— 0. (+)

n—ao

n

To show this we take a projection operator P,z := > {z,¢e;)e;,
i=1

where z€H and (e;) is a basisof H.

AP, + P,A . . :
Taking A, = A+ A which is actually compact (since has a finite

range) and symmetric.

And (*) may be concluded from the following convergence and Cauchy-
Bunyakovsky-Schwarz inequality:

1
|Az — Anz|n < 5(,49; — AP,y + | Az — PnAx\H>

1
< 5 (IAlw) - o = Pazl + | Az = PoAziu)

1 o0 o0
<5 (Al | Y @evesln+1 Y, (Ar,edeiu) — 0

n—a0
1=n+1 1=n+1
—_— ~ ~~
NO N0
So, the question remains just to understand under which conditions the
following expression tends to zero:

E[(AX.X)] —supTr[4, - B]| = [E[(AX. X)] ~ E[(4,X. X)]|

/

< EH<AX, X5 — (A, X, X>H RN

n—ao
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2.5 Covariance set under sublinear expectation

Let us describe the notion of the covariance operators for a random variable
X ~ Ng(0,%) under the sublinear expectation E. Actually, we will see
that X is a set of operators.

If E is linear (denote it as E'), then:
Cov(X) = Q, where @ is defined as: (Qh, k) = E[{X,h){X,k)].
Now we fix the family of linear functionals {Eg, 0 e @} for given sublinear

functional E, and let {e;,7 = 1} be a basis in H. Then we have:

E[(AX, X)] = E [ SUAX, e)(X, ei>] = sup £ [ D AX €)X, ei>]

i1

We can change the order of integration in the last term. For check it we
formulate the following lemma.

Lemma 2.3. For A a linear bounded operator and square-integrable r.v. X

under the linear expectation E , i.e. E[HXHE'] < o0, the following equality
holds:

B[ Y AX exX.e)| = S E[cAx e,

i1 i>1
where {e;,i = 1} is a basis in Hilbert space H .

Proof.
We know that we can change the finite sums with a linear expectation, i.e.

E [ i]z_vjl<AX, e X, ei>] _ ]Z_Vll E [<AX, e X, ei>] |

So, we need to take just limits when N — oo from the left and right part
respectively, and see that they coincide.

(a) Define Sy as a partial sum of the given series.

N
Sy = §<AX, eiXX,e.

i=1
We have that for every we Q Sy = Y(AX, e, XX, ey =(AX, X).
—% i

Take the projection operator Py := Proj(ey,..,en), that is it is noting
else but Py = Py = P% and |Py|y=1.
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Then we have

N N 0
SN = Z<AX, 6i><)(7 €i> = Z<AX, PN62'><X, PN6i> = Z<AX, PN€i><X7 PN6i>
1=1 1=1 =1

0
= SUPyAX, e X Py X, e = (PyAX, Py X) = (P2AX, X) = (PyAX, X).

i=1
And we get that  [Sxy| < [Px| o 1Al ey 1X1H = [Alzw)- [ X7 e L1 (P),
where P is a probability for the integral that E.
And it follows by the dominated convergence theorem that

B[Sy] — E[(AX, X)].

(b) Let @ be a covariance set of operators of X (@ is a trace-class
N N

operator), then 3 E[<AX, XX, ei>] = SUQA%e; e
i=1 i=1

0
The last term has a limit > {(QA%e;, e;) = Tr[QA*],
i=1

Q0
because ) }<QA*6¢, ei>‘ < o0, since QA* is also a trace-class operator.
So that, B
N o0 0
3 B[(AX, e(X,ep| — QA€ e) = 3 E[(AX, (X, e
i=1 —O =1 i=1
[]

Surely, we can use Lm.2.3 in our case, because by Prop.2.4 and Th.2.1
we get that
o > E[|X ] = sup B[ X 5]
€

It means that,

E[<AX, X| = sup D2 By [<AX ei)(X, ez>] = sup 2,(QoAes, i)
= sup Tr[Qy - A].

In the same manner we get that e
E[(X, XX )] = E[ $0Xeh e B (Xoej)h.ey)]
= sup By| 3 (X, e e(X,e)kiey))

0O 1,j=1
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Using the same idea as in the proof of Lm.2.3 permits us also to change
the integration sums and we obtain that

B[O = sup 3 By X €)X, ) |(h, e, )

0€0 i,j=1

= sup Z <Q061763><h €Z><k €]> = SUP <Q9h k>

0eO i j>1
So, we have that

= {Qy — covariation of X under Ey, 0 € O} = Cov(X) (8)

B0 I, )] = sup (Qh, k) (9)

Remark 2.8. In order to better understand the nature of the covariance
set of operators under sublinear expectation, we list the following obuvious
properties:

1)E| — (AX, X)| = sup Tr[-AQ] = sup Tr[AQ],
Qex Qex™

where ¥ 1= {—A| AGZ}.
2) E| - (AX, X)| = -E[(AX, X)].

3) [ (X, hX{X, k>] = sup< Qh,ky = sup{Qh, k).

Qex
4) X1~ NG(Ovz)a X ~ NG(Ovz ) = GXI( ) - GXz(_A) .

Also we can show that one-dimensional projection of the G'-normal dis-
tributed random variable in the Hilbert space is also GG-normal distributed.

Proposition 2.5. Let X be a G -normal distributed random variable in the
Hilbert space H, then for every heH (X, hy is Gj-normal distributed,

where Gp(a) = %(Oﬁ a2(h) —a~ QQ(h));

a(h) = [<X hy*] = 2G(h- hT),
o’ (h) = —E[~ (X, 1)’] = =2G(~h - h").
So, we keep the notation and can write that X ~ Ng(0, [a?(h),5%(h)]) .
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Proof.

We use the definition of the one-dimensional G -normal distribution given
by Peng (see[72, 2.1]), which actually we have generalized to infinite-
dimensional case. So, by the definition we have

al(X,hy + X, h)y ={aX +bX,h) ~ (Va2 + b2 X, h)y =+a?+b2(X,h).
It follows that (X, h) is G-normal distributed.

Let us compute 1-dimensional G -functional for (X, h):
_ 1 21 1 + 21 ~— _ 2
Gala) = 2E[a<h,X> ] -3 (cv E[<X, h>] a ]E[ (X, h>]
1
_ a0t 328 — o o2
—2<a 72(h) — a g(h)).

And 2G(h-hT) =Eh-hT - X, X) = ]E{ 5| (2 hihs X)X
_ E[; (hiXi)2] _ E[<X, h>2] .
0

Remark 2.9. We also recall the following obvious fact settled in the finite-
dimensions:

if XeH® then E[X?]:=07%2>g*=:-E[-X?]=>0.

Some algebraical properties of the GG-normal distributed random variables
are listed below.

Proposition 2.6.
1) Let X ~ Ng(0,%) then aX ~ Ng(0,a®Y), aeR;
2) Let Y = X34+ X5, where X; ~ Ng(0,%;) are reciprocally independent,
then 'Y ~ Ng(0,%y) with a covariance set

Sy :={Q1+ Q2| Qie%;, i =1,2};
3) Let Z =SX, SeL(UH), ZeH, XeU, X ~ Ng(0,%) then
Z ~ Ng(0,87) with a covariance set ¥z := {SQS*|Q € L}.
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Proof.
1) By Def.2.8 it follows that aX is G-normal distributed.

Also it is clear that:

1 1

Gx(A) = 5Gax(A) = 5 sup Tr[A - Q].
a 2 QeX

From the other hand we have:

1 1 1
Gax(A) = EaQ Zug Tr[A- Q] = 5 Zug Tr[A(a?Q)] = 5 qugz Tr[A - Q4].

So, we can conclude that Cov(aX) = a?%.

2) By Def.2.8 we get that random variable Y is G-normal distributed,
because: ) )

CL(X1 + XQ) + b(Xl + XQ) ~ Va2 + b2 (X1 + XQ)

Also AX; and X, are independent random variables.

In fact, let p(Azx,y) = @(z,y), so we have that

Elp(AX1, Xo)| = E[, (X1, X2)| = E[E[@(Xh@)]m:&]
= E[]E[QD(AXM .TEQ)]$2_X2] .
In the same way we can conclude that AX, and X; are also independent.

Now we compute the G -functional for the random variable Y :

Gr(A) = Cx,x,(4) = 3 ECAC + Xo), (X1 + X))

1
-3 IE[<AX1, X0+ (AXo, Xo) + (AX), Xo) + (AXo, X1>]

]- em.x.
= SE[(AX), X)) + (AXa, X) | B Gy, (4) + G, (4).

Hence,

Zug TI’[A ’ Q] = 2GX1+X2 (A) = 2<GX1 (A) + GX2 (A))

= sup Tr[A-Qi]+ sup Tr[A-Qs] = sup Tr[A(Q1+Q2)] = sup Tr[AQ].
Q1€3 Q263 Q1€ Qely

Q263
And it means that Y ~ Ng(0,Xy).

3) By Def.2.8 we obtain that random variable Z is G -normal distributed,
because:

a(SX) + b(SX) ~ Va2 + 12 (SX).
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Then let us compute a G -functional for the random variable 7 :

1 1
Gz(4) = Gsx(4) = S EASX, SXo = S B(S"ASX, X)y = Gx(5°AS)

1
= 5 Sup Tr[S*AS : Q] :

QeX
Consider Tr[S*ASQ] = Y (§*ASe;, Qeiyy = Y (ASe;, SQein
1=>1 1>1
= 21 Zl<A56i7fj>H {(SQei, fim = 21 Zl<6¢7S*A*fj>U +{es, Q*S™ fi)u
i=15= 121 9=

= Y@ S f;, S*A* fiou = D(ASQ*S* f;, fion = Tr[ ASQ*S*|

j=1 J=1

= Tr[ASQS*].
1 1
So that Gz(A) = =sup Tr[ASQS*] = — sup Tr[AQ].
2 Qex 2 Qex,
And it means that Z ~ Ng(0,X7). O
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3 Viscosity solutions

In this chapter we describe the notion of the viscosity solution for a fully
nonlinear infinite-dimensional parabolic PDEs. Mainly the material (defi-
nitions and results) was taken from Kelome [55]. In infinite-dimensions for
a viscosity solutions Kelome uses a particular notion of B-continuity which
we also describe below. We apply his results of comparison principle and
uniqueness of viscosity solution to our theory where in the following chap-
ters we will solve parabolic PDEs in infinite dimensions with a probabilistic
tools of sublinear expectation.

3.1 B-continuity

Consider a fully nonlinear infinite-dimensional parabolic PDE:

(P)
u(T,z) = f(z).
u:[0,T] xH—-R;
f € Cp.Lz’p(H);
G : Lg(H) — R is a canonical extension of a G -functional defined
on Kg(H) and denoted by the same symbol G';

A: D(A) - H is a generator of Cj-semigroup (etA) :

{ﬁtu+<Ax,Dzu>+ G(D2u) =0, tel0,T), zeH;

Recall that C, 1, is a space of Lipschitz functions with a polynomial
growth (see 2.3), and Kg(H) is a space of compact symmetric operators
(see 2.1).

The following condition on the operator A need to be held (see [55, 2]):

Condition. There exists B € Lg(H) such that:
1)B>0;
2)A*B e L(H);
2)—A*B+ coB =1, for some ¢y > 0.
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Remark 3.1. The im(B) should belong to the set D(A*). If it happens
that D(A*) < H compactly, then it is necessarily B be a compact operator.

Proof.
In fact, let {x,, n>1} c H and |jz,||y <c Vn>1.
So then HA*BZL‘nHH < HA*BHL(H) : H:L‘nHH < c- HA*BHL(H)
Since we assume that D(A*) is a compact embedding in H, we have
{Bx,, n =} is bounded in D(A*).
Thus there exists a subsequence {z,, , k> 1}, such that {Bx,, , n > 1}
is convergent in H.
And we conclude that B e K(H).
[]

Remark 3.2. If A is a self-adjoint, maximal dissipative operator then we
can take B := (I —A)™! with cy := 1 which satisfies the condition imposed
above.

Usually, in applications A = A, so such condition for finding the corre-
spondent B s not too strict.

Later we need a space H_; which is defined to be the completion of H
under the norm ||z|?, := (Bz, x) = (B2z, B2z) = |B2x|f3.

Fix {€;, j = 1} to be a basis of H_; made of elements of H.

(Hence in such a case {B2&;, j =1} is a basis of H).

Define Hy := span{éy,..,en}, N >1.

And let Py be an orthonormal projection H_; onto H:
N

PNJ} = Z gj<x;gj>—17 T € H_1 .
j=1
Also we define the following operator @y := 1 — Py .

Definition 3.1. Let u, v:[0,7] xH - R.
u 1s said to be B-l.s.c. (B -lower semicontinuous)
if u(t, @) < lim u(ty, @) ;

n—0o0
And v is said to be B-u.s.c. (B -upper semicontinuous)

if u(t,x) = lim u(ty, x,),
n—ao

w S
whenever x, — x, t, > t, Bx, —> Bx.
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Definition 3.2. A function which is B -l.s.c. and B -u.s.c. simultaneously
15 called B -continuous.

Remark 3.3. Note that B -continuity means that function u(t,z) is con-
tinuous on the bounded sets of [0,T] x H for the [0,T] x H_1 -topology.

Definition 3.3. A function u(t,z) is locally uniformly B -continuous if it
is uniformly continuous on the bounded sets of [0,T] x H for the [0,T] x
H_1 -topology.

Remark 3.4. In some cases B 1is a compact operator.

If it is so then from the convergence x, — x it follows that Bz, — Bz .
And notions “B -continuity “, “locally uniformly B -continuity “ and “weak
continuity” are the same.

3.2 Test functions and viscosity solutions

Definition 3.4. A function ¢ : (0,T)xH — R is said to be a test function

iof it admits a representation ¢ = o + x, such that:
1) pe 01’2<(0,T) « H —>R) ,-
@ 1s B -continuous;
{@tgo, A*D,p, Dy, Dfmgp} are locally uniformly continuous' on

(0,7) x H;
2) x:(0,7) x H— R and has the following representation
x(t,z) =&(t) - n(x), such that:

e Cl((O,T) — (0, +oo)> ;
nt, ne CE(H) — 1.e. the derivatives have polynomial growth:
| Dnllw, |1 D0l < C(L+ |2[™) ;
n(x) =n(y) whenever |z| = |y|;
{Dn, DQn} are locally uniformly continuous on (0,T) x H and have

polynomaial growth.

Yi.e., uniformly continuous on the bounded sets (but not necessary on the compact ones)
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Definition 3.5. Let u, v:[0,7] xH - R.
u 1s said to be a viscosity subsolution of (P) at the point (ty, o) if:
1) u is B-u.s.c. on [0,T] x H;
2) for every test function 1 :
u<Y;
U,(t(), .T}()) = ¢<t0, xo) 5
|00+ @, A"Dap) + G(D2,0) | (t,0) = 0
u(T,z) < f(x).

Analogously, v is said to be a viscosity supersolution of (P) at the
point (tg,xq) if:
1) wis B-l.s.c. on [0,T] xH;
2) V test function 1 :
V=)
v(to, z0) = ¥(to, zo) ;
|0+ @, A Do) + G(D2,0) | (t0,0) <0
v(T,x)=f(z) .
Definition 3.6. A function which at the point (to, x¢) is viscosity sub- and
supersolution simultaneously is called viscosity solution.

Remark 3.5. Note that in the definition we imply that D,p € D(A").

Remark 3.6. Actually the functional G in equation (P) can be considered
only on a compact set of operators. Because when we solve this equation
the compactness of the operator D2 1) of test function is constrained only
by such a thing that we are looking for only such functions as solutions
which have compact second Fréchet derivative, i.e. on the domain of G -
functional. This fact is subjected to only the above described requirement.
In fact, the functions ¢ and x are built in the following way (see [55,

p-14)):

we take a test function @Z = @+ X defined on a (0,T) x Hy and o, X
are bounded. Hy 1s defined as a space Hy with H_q -topology. Note that
dimHy < oo. And for a test function we take p(t,x) == @(t, Pnx);

x(t,z) := X(t, Pyx).
It 1s clear that such ¢ and x have a compact second derivative, so a test
function ¢ = @+ x satisfies required condition.
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3.3 Comparison principle

The following result is called a comparison principle which is obtained by
Kelome and Swigch (original formulation one can see in [55, Th.3.1]).

Theorem 3.1 (Comparison principle).
Let w and v be respectively sub- and super- viscosity solutions of the (P),
such that:
1) there exists a positive M , such that
u< M,
v=-—-M;
2) f is bounded, locally uniformly B -continuous;
3) G satisfies the following conditions:
(1) if Ay = Ay then G(A1) = G(As);
(1) there ezists a radial, increasing, linearly growing function
p e C*(H — R) with bounded first and second derivatives, such

that for all o >0 : ‘G(A—l—ozDzu(x))—G(A)) <C(1+]z]) o

(iii) sup{ ‘G(A +ABQy) — G(A)‘ Al < p A < p,

A= P*APN,peR} — 0.
N—00
Then u<wv.
Remark 3.7. If G is a G -functional then condition 8) of Th.3.1 holds.
Proof.
(i) Obvious, by the definition.
(ii) Let us take pu(x) :=+/1+ |z|?.
1 TR
Hence D*u(z) = —————| T + :
ul) 1+$2< 1+m2>

And we have [D?p( a:)HL(H) < 2.

Thus )G(Amm (2)) — (A)\ < a-G(D*u(x)) :%2351%[1?%(35)5]

< %Sup Te[S] - | D2u(242) 100 < - C < - C(1 + |a).
SeX.

(ifi) |G(A +ABQN) — G(A4)| < A G(BQx) = %Sup Te| BQwS|.

SeXx
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But Tr|BQyS| = ¥ (BQxS-B'2e,, BY2ey = ¥, (BY2QnSB er e,

k=1 k=1

.
= Tr(o)| BYPQuSBYE| = Te( )| QuSB| = Tr( 1| SBQy | - X (BSBewe).

o0
Let us define fy(S):= Y <(BSBej, ey, SeX —compact.

k=N+1
Hence fye C(X);
Inls

fn(So) > 0 for every Spe ¥, since fy is a tail of convergent

series.
By the Dini theorem yields fx N:; 0 on X.
—0
That is  su — 0.
Seg fN N—0
So we we can conclude that (iii) holds.
[l

The following proposition is a comparison principle for the functions with a
polynomial growth. In fact, we will use this result applied to the functions
of the C, 1, class.

Proposition 3.1. Let u is a sub- and v is a super- viscosity solution to
the PDE (P), such that for every t € [0,T] and for every x € H there
satisfy:

ult, z) < C(1+ Jo™);

—u(t,r) < C(1+ |2|™); (#)

[f(@)] < O+ |2|™).

And the following conditions hold:
(1) there exists continuous 0. : [0, T] — [0,00), such that:
at the every point t € [0,T]: 0-(t) y 0;

(11) there exists a radial, increasing, function gy, such

that:
90, Dgo, D*qo are locally uniformly continuous,
. golz)
lim >0
|x\joo ‘I‘m+1
(iii) () - go(x) + ‘G(A +6.(t) - D2go(x)) — G(A)] <0.
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Then the functions

us(t,x) == u(t,x) — 4-(t) - go(x);

ve(s,y) 2= v(s,y) + 0=(s) - go(y) ;
are respectively sub- and super- viscosity solutions of the PDE (P), such
that u. < v..

Moreover, if ¢ -0 then u<wv.
Proof.
Fix a point (¢,z) € [0,T]xH.
Let v be a test function, such that: u. < ¢ ;
us(t,z) = ¥(t, ).

For the viscosity subsolution u(s,y) = u.(s,y)+d:(s)-go(y) we have that
there exists a test function 1, such that

u <

u(t,x) = P(t, ),
from this we can get that w(s y) = U(s,y) + 0:(5) - go(y) -

Hence R := 0w)(t,z) + 0L(t) - go(x) + {x, A*D,p(t, x))
+G (D2, 0(t, ) + 6.(t) - D*go(x)) = 0.
From another hand:
01, 3) + (a, A" Daplt, 1)) + G (D2, (t, )
(1211) Op(t, z) + {x, A*Dyp(t, )y + G(D2,0(t, x)) + 6.(t) - go(x)
+HG(D2u(t,2) + 8.(8) - D2go(x) — G(D2,0(t, )]
> Gt @) + o, A Daiplt, ) + G(D2,0(E ) + 0L - gofa)

. +G (D2, 0(t, ) + 6.(t) - D*go(x)) — G(D2,4(t, x))
—R>0

In the same time, u.(T,x) = u(T,x) — d(T) - go(x)
< Jx) ~ 0T o) = f(a).

Also, from (ii) it follows that there exists a positive M such that
go(@ ) M(1 + |z[™*1).
And - uc(t, x) = u(t,x) = 0=(t) - go(x) < C(1 + |2|™) = 0:(t) - go().
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So, since  lim w.(t,x) = —oo, therefore there exists a positive K such
|| —00

that u.(t,z) < K.
In the same way we can show that wv.(¢,z) is a viscosity supersolution

which is also bounded from beneath.

Using the comparison principle Th.3.1 we deduce that wu. < v..

3.4 Uniqueness of viscosity solution

Theorem 3.2. If PDE (P) has a B -continuous viscosity solution on [0,T] xH
that has a polynomial growth, then such a solution is unique.

Proof.
Note that f e C,1ip(H) means the f has a polynomial growth,
[f(2)] < O+ []™).
Let u,v be given two viscosity solutions of the PDE (P).
Assume that there is a point (¢p, zg) such that wu(tg,xg) = v(to, x) .

So, we can treat that u and v are respectively viscosity sub- and super-
solutions of the PDE (P).

Take 0.(t) :=¢-e ;
go(x) := 1+ |z||™*t.
Then we have:
Dgo(x) = (m+ D™ - I + (m* = D[Pz @ 2;
| D2g0(@) Ly < (m? +m) a1
So, the pair 6.(t) and go(x) satisfies the conditions (i)-(ii) of Prop.3.1.
There only remains just to check the condition (iii):

1) - gollw) + |G (A + 0.() - Do()) — G (A)]
< 3(1) - golx) + |G(0:(1) - D2go(w)

—a m 1 —a
< —ae-e (1 + z|™) + 521615 Tr[S] c-e tHDQgO(:U)HL(H)

N

1
—= - e (a(1+ 2|) = 5 sup Te[S] - (m? + m) - ")
2 Se¥
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sup Tr[S] c(m24+m) - |z|m !
Sex

Since, 0;
1+ [|m*t ] —co
sSup Tr[S] -(m?+m) - |z|m !
And, &2 0;
L+ [z]m+t || -0

So we have there exists a positive a such that for every x € H:
sup Tr[| S| - (m? +m) - ||z

1 _ SeX

2 1+ |z|m*!

Then we conclude that the condition (iii) holds for a := «y.

QO/

Therefore, we have conditions (i)-(iii) of Prop.3.1 hold.
Set wu.(t, ) :=u(t,x) — 6.(t) - gd (x);

v-(t,x) = v(t,r) — 5.(t) - gd' ().
Then from Prop.3.1 we get wu.(to, o) < v-(to, o) -
Letting ¢ — 0 yields wu(to, zo) < v(to, zo) -

So that wu(ty,zo) = v(to, xo)-
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4 G-expectations

In this chapter we describe a main notion of the theory, the notion of a G-
expectation, the special case of a sublinear expectation. It was introduced
by Peng [72] and we by analogy carry it to the infinite-dimensions. Also
we touch upon such objects as G-Brownian motion, capacity and upper
expectation.

4.1 G-Brownian motion

Definition 4.1. X; : QxR, — X s called a stochastic process if X,
is random variable on a sublinear expectation space (2, H,E) for every
nonnegative t .

Definition 4.2. Stochastic process is called a G-Brownian motion if:

1) BO = O,’

2) forall t,s>0 (Bs— B;) ~ Ng(0,8%);

3) forall t,s =20 (Byys— Bi) is independent from (B, .., By,)
forevery neN, 0<t; <...<t,<t.

Remark 4.1. (By,,, — By,) is independent from ¢(By,, .., By,)
0<t <...<tp <tpe1, peCprpy (XF > R).

Proof.

E[w (BtkH — By, o(B, .. Btk)>] _ E[C(Btm — By, (B, ... Btk))]

De22-7 E[E[C (Btk+1—Btk7 ?7)]172(Bt1,-.,Btk):| - E[E[?’D (Btk‘H_Btk’ g0(1_)’))]1_":(Bt1""B‘5k)].

Y, ¢ are corresponding functions of C,, r;, class.
]

Proposition 4.1. Let B; be a stochastic process and:
Bt ~ \/%Bl ;
B is G -norm. distributed.

Then By is G -Brownian motion
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Proof.
1) By = 0;
2) Bias — By ~ i+ 5B1 — ViBy ~ /3B) ~ N (0, sz) :
3) Biis — B ~ \/§Bl ;
(Bi,...,B) ~ (VEBY, ... .V&B"), such that By, B, ... B/
are independent copies.
So that B is independent form (Bfl), - BYL)) .
Therefore (BHS — Bt) is independent form (Btl, R Btn) )

O
Corollary 4.1. Bl := (B, h) is a 1-dimensional G-B.m.
Proof.
It follows from Prop.4.1 and Prop.2.5.

O

Remark 4.2. If B; is a G -Brownian motion then G(A) = %EKABl, By)y].
Moreover:

1) %E[<A3t,3t>] _1G(A).

2) for every k,r E|Bf-Bj|=tE[B} Bi].

Proof.
1) For fixed t¢,s consider random variables X := B; and Y := B, —B;.

Since X ~Y ~ Ng(0,£%) then by Rem.2.6 Gy = Gy .
Hence E[<A(Bt+s — Bs), Bt+s — BS>] = ]E[<ABt, Bt>] .

Let b(t) := E[<ABt, Bt>] .
Then let us compute b(t + s) = ]E[<ABt+s, Bt+s>]
= E[(A(By1s — Bs + By), Biis — By + By)|
= ]E[<A(Bt+s - Bs): Bt+s - BS> + <A387 BS> + <A(Bt+s - Bs)a Bs>
+(AB;, B+s — By)|

(A(Biss — By), Biys — Byy| + E|[{ABy, By)|
= b(t) + b(s).

So it may be concluded that E[{ABy, B;)| = b(t) = t-b(1) = t E[{ABy, By)].

Prop.2.2.5).(b), Rem.2.5
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2) Let B; ~ Ng(0,%;) then B; ~ Ng(0,%;) and By ~ v/tB.
From the 1) we have X; = {t : s! s € 21}.

E[(B:, ex)( By, e,)] 2 sup (Quex, e,

Then E[Bf - By]
Qe

E|Bj - Bi| = E[(By,e1)(B,e,)] D sup (Qrer. e,

Q1€X
Therefore E[B}-By| = sup {t Qoer, e,y =t sup (Qoex, e,y = tE[Bf-Bf|.
t QueEX: QoeXy
]

4.2 Capacity and upper expectation

The notion of capacity, i.e. a supremum measure, was introduced by Cho-
quet [21]. Since in our framework there are no fixed probability measures,
so we will use exactly this object. The classical notion “almost surely”
becomes “quasi surely”.

So, let (Q,B(Q)) be a complete separable metric space with a Borel

o -algebra onit. M is the collection of all probability measures on (€2, B(€2)).
Take a fixed P < M.

Definition 4.3. Let us define capacity to be

c(A) =cp(A) = iligP(A), A e B(9Q). (10)

Remark 4.3. It it obvious that c(A) is a Choquet capacity (see [21]), i.e.
(1) c(A)e[0,1], AeQ.
(2) if Ac B then c(A)<c(B).
(3) if {An, n=1} < B(Q) then (U 4n) < Y c(4,).

n=1 n=1
(4) if {A,, n=1}<cB(Q): A, 1A= A4,
n=1
then c(|J A,) = lim ¢(4,).
n>1 n—aoo
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Definition 4.4. A set A s called polar if ¢(A) =0.
The property holds quasi surely (q.s.) if it holds outside a polar set.

Definition 4.5. We define an upper expectation as follows:

E[-]:= ?Dléng[‘].

Lemma 4.1. If E[|X|P] =0 then X =0 quasi surely.

Proof.
E[|X|[P] = 0 thatisforevery PeP Ep[|X|?] =0 hence X =0 P-as.
for every P e P.
And finally ¢({X =0}) =sup P({X =0}) =1> 0.
PeP

4.3 Solving the fully nonlinear heat equation

Let B; be a G -Brownian motion with a corresponding G -functional G(-),

such that  G(A) — Q%IE[@AXBt, By

Consider equation (P) with A =0, i.e. the following parabolic PDE:

(P0)

ou+ G(D>u) =0, tel0,T), veH;
u(T,z) = f(x).

In order to proof the existence of a viscosity solution to equation (P0) we
need Taylor’s expansion for the function wu(¢,z). Such a trivial statement
will show us a following lemma:

Lemma 4.2 (Taylor’s formula).

Let ¢ € C*(RxH — R), (§,Az) and (t,z) are in (R,H), such that
(t+ 6,2+ Ax)e D).

Then:

B(t 16,2+ A7) = d(t,2) +5-&tw(t,x)+<Dx¢(t,x),Ax>+%52-6t2t¢(t,x)
+6 - O [(Dt(t, ), Ax)| + %<D§x¢(t, ) Az, Az) + o(6% + |Az?|) .
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Proof.
Consider p(s,8) = ¥ (ty + s(t —to), zo + 0(z — x9)), pe C*(RxR — R).
For fe C*H) we have

f(x) = f(a) + (x —a) ' Df(a) + % +(z —a)' D*f(a)(z —a) + o]z — a?).
Then p(s,0) = p(0,0) + sps(0,0) + 0 pye(0,0) + %szpss(O, 0) + s6 psy(0,0)

1
+§92 pgg(o, O) + O(S2 + 92) .
If we denote the variables in the following way:
t:=ty, v:=ump, 0:=s(t—1ty), Ax:=0(x —x9), we can easily see that
what wee need to be proved.
]

Theorem 4.1. Let f is a B-continuous of C, 1ip(H)-class real function.
Then u(t,x) := E[f(x + BT_t)] 1S a unique viscosity solution to equation
(PO):

u(T.z) = f(z). (F0)

where By is a G -Brownian motion with a corresponding G -functional
G(-).

Proof.
Let 1 be a test function, and for every fixed point (¢,z) € [0,T]xH we
have: u < Y ;

u(t,z) = ¥(t,z).
Taking a small enough ¢ yields:
Uit x) = ult,x) = E[f(z + Br-y)] = E[f(z + Bs + Br—(115))]

J/

{atm G(D}u) =0, tel0,T), zeH;

~
indep.

] = E[u(t + 0, + ﬁ)‘B:Bé]
= E|u(t + 6,2 + Bs)| <E[(t + 6,z + B;)].

B=DBs

— E[E[f(x + 38+ BT—(t+5)>]
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Using the Taylor formula (Lm.4.2):
1
¢(t + 57 T+ B5) = ¢(t7 ZU) +0 - at,(vb(t? SU) + <DI¢(t7 ZU), B5> + 5 0% at%¢(t7 'CU)
1
+6 - [ Dy (t, ), Bsy | + 3 (D2,4(t,z)Bs, Bsy + 0(6* + || Bs|?) .

Then we have
0< E[W Ty ot B(;)] (7)< E[¢<t v 8,2+ By) — ot :1:)]

S ou(tx) + %52 o2t ) + 5 - G(D2,W)(t,z) + o(6 + | Bs|?2).

Letting § — 0 yields [aﬂb + G(D%xw)](t,x) =>0.

Note, that u is continuous at (¢t,z) € [0,T]xH.
In fact, let us show that E[f(z + B,)] — E[f(z+ By)|, tel0,T] :

0< ’E[f(a: +By)| —E[f(z + Bt)]‘ < E[!f(x + By) — fle + Bt)l]
<E[(1+|w+ B+ Jo + B") - |B.~ Bl

1
2

< (E[(l +le+ B + o+ B")*| - E[ 1B, - Bt2]>

(SIS

< (E[(l 2omle]™ + m- sFLX| me 3K (s - D[ X )
7 " J/

-

'

bdd. by Prop.2.4 bdd.

_ = s\ 0,
where X X, X are independent copies of Bj. o~

u(T,z) = E[f(z)] = f(z) < f(2).

So we see that u is a viscosity subsolution to equation (PO0).
In the same way one can prove that u is a viscosity supersolution, and the
existence is proved.

It is clear that if f is B-continuous and has a polynomial growth that
u is also B-continuous and has a polynomial growth, because a sublinear
expectation [E does not influence on it. So we can conclude that u is a
unique viscosity solution by Th.3.2.

[]
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4.4 Basic space constructions

Let U,H be Hilbert spaces, and {e;} and {f;} are systems of orthonor-
mal bases on them respectively. We consider G -Brownian motion B; with
values in U. Assume that random variable B; ~ Ng (O, Z) with a covari-
ance set > . Recall that X is a convex set of linear bounded non-negative
symmetric trace-class operators.

Now we are going to define a Banach space of operators & with values
in H and defined in an appropriate space of U, such that dom® < U,
: 2 ._ £ _ 1/2)12

endowed with the norm H(DHLg = 21;12) Tr[2QP*| = 216112) |PQY 12,0 -

First of all, we formulate a trivial statement that makes us sure that |-[7
2
is a norm indeed.

Proposition 4.2. |- |3, is a norm.
2

Proof.
1) |a®|z = sup |a ®QY?|,wn) = lal - sup [PQY2| ) = la| - | @]z
QeXx QeX

2) @+ V7 = Sup [(@ +¥)QY?| L,
€
< sup [PQY? + sup | TQY? = [®[2, + [T[3,.
QEI;H Q%[ Ly um) QEI;H Q| Laumy = @175 + W75
3)If |®[35 =0 then sup HCIDQI/QHLQ(UH) =0.
2 Qex

So, it follows that for every @ € X H(I)Ql/QHLQ(Ql/Q(U),H) =0.

And we can conclude that for every Q€ X and every ze QV2(U) we
have that &z = 0.

[]
It needs that dom ® > |J QY%(U).
QX
Take dom® = Uy = {ue U | 3u e Q72(U), Qies: vV u,
. 1=1
El il gy < 0} -

m 100
and |lufy,, := inf { 21 HuiHQ}/z(U) u_luzll% w; € QZW(U), Qiex).

1=
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Note that [uivey, = 1Q; Puilu, uie Q*(V), Qe
and it is known that <Q1/2( ) E HQ1/2 ) is a Banach space (see [32, 4.2]).

Remark 4.4. In the definition of Uy :
Ay & ) o0
from uuuz u;  follows u”=HUZZ U; .

=1 1=1
Proof.
K 0 ) o0
uw— > u = u’ < Wil A1z, — 0.
H g]l lvs = | i:%l lus Z_:%]H luill growy ——
]

Lemma 4.3. Uy — U ( Uy is a continuously embedded in U ), i.e.:

UE (- U

|- lu < c. |- s -
In particular YQ € ¥, QY*(U) — U.
Proof.
Let Qe X.

It is well known that QY2 € Ly(U) (see [73, Prop.2.3.4]).
Therefore QY?(U) c U,
So that for all ue QY2 ¢ uly = [QY2Q"2uly < [QV2]y-ulguiqy) - (+)

Every Q; € ¥ is bounded in L(U) and let [Q;|u < C?

Also we have that C2 > |Qillu = |Q2Q1u = |QV?|3.
From (=) it follows that |uly < C - HUHQ1/2

Therefore QY?(U) — U, VQ;e€ . (#)

Also it is clear that Uy < U.

Hence for all we Uyx, u= > u; :
i>1

(#)
lulu =1 2 uillu < 2wl < C- 2 lluill ey,
i>1 i>1 i>1 :
Taking inf we obtain |jully < C - |u|u, -

So we have Uy — U.
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Lemma 4.4. L(U,¥) — L(Ug,H).

Proof.
Lm.4.3
Since [Puln < [@lrwm - [ulu < C-[®[up - [ulu, and Us < U,
then we have L(U,¥) < L(Ug,H) and |®|ruum < C - |®|rwum)-
O

Below we will use a criterion of completeness of a normed space (see |2,
Lm.2.2.1]) which we have formulated in the following lemma

Lemma 4.5.

Normed space A is complete if and only if when from > |a,|a < o it
n=1

follows that there exists an element ae A such that aUAZ Qy, -
n=1

Proposition 4.3. (Us, || |us) is a Banach space.

Proof.

[e¢]
Let a sequence {u"} < Uy, such that Y, [u"|y, < 0.
n=1

For every element u" there exists a subsequence wu} € QZ Q(U), where
Q0

Qi, € X, such that " = > uf .
=1

Since X is no countable, but we can always reduce to the case with a
countable number of () € X:

Taking ¥/ := | {an} {Ql}pp we can see that it is countable.

n=1

So we can use here the set Y instead of X, and in the same time we can
suppose that u" Z ul', ul € Ql/Q( U), where uf = uj - 1g, ;, e we
renumber the elements and putting some zeros. It means that for every
u™ there exists ul € Q ’(U), where Q; € ¥ such that u” Z ul'

So that, there exists a sequence {5n} with > &, < o0, such that
n=>1

o0
en + HunHUz > Z:l Hu?HQJQ(U) = Hu?HQf”(U) . (*)
i=

ol



0
Therefore )] HU?HQVQ( < oo, ul eQI/Q( U) — Banach.
n=1 ¢

Then by Lm.4.5 it follows that there exists wv; € Qi% (U), such that

gy, o
v, = Z ul', for every i.

So that wv; H HUZ ul!

OO
Taking v : /v Z , let us show that this series really converges in the
U-norm: B
From (*) we have:
o O Lm43 o O
o> Z [uilgrey = 22 25 1wl greg, -2 2wl
n=114= t=1n=1 1=1n=1

w
=C- 2 vifu-
=1

w .
By Lm.4.5 we deduce that >} v’ converges in |- |y.
i=1

m .
Also we can show that >’ HUZHQ;/Q(U)

i=1
In fact from (=) follows:
o O Q0
SRR TS o o I ISRED of [ M
n=1i= i=1n=1 i i=1 i
Therefore v € Uy.
Q0
Consider  lv — Z uos = | Z .Y Z e <3| Y ui gre
n=1 i=1n=1 i=1 n=K+1 ’

0
<> X HU?HQi/Z(U) — 0, by the monotone convergence theorem.

oy &,
Hence v =7 )]
n=1
According to Lm.4.5 we can conclude that (UE, |- HUZ) is complete.

]
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In the very beginning of this chapter we would like to describe a Banach
space with the norm |- [3,. So, we are ready to define it. This space is
2

closely related to the construction of stochastic integral in the following
chapter 5.

Definition 4.6. Ly = {® € L(Ug,H) | |®]z < xo}.

Remark 4.5. From the definition above follows that if Q) € X then
dQ'? € Ly(U, H)

Lemma 4.6. Ly — L(Ug,H).
Moreover |- |pwyh) < |- |rp (note that here a constant C'=1).

Proof.
Let ® € Ly then ®e L(Ug, H).

u € Uy it means that uH HUZ U;, U; € Q1/2( U), Q; e .
Note also that || > > H<I>Q1/2HL2 U.H)

Q0

B - 1/2 ~—1/2
Therefore |[®uln = [P (Z n=| Zl@ui!H = | Zlq’Qi Q; uiln

& 1/2 ~1/2
< 2 10Q; e Puilv =

Taking inf for all such u; we get [®uln < [P 5 |ullu, -

0

Q0
; Cilluil gy < Z @] 25 Juill g

Hence [ @ zuyny < |P]Ls-

So we can deduce that L3 < L(Ug, H).

Proposition 4.4. (L, |- |;z) is a Banach space.

Proof.
Let {®,} < L§ be a Cauchy sequence: |®, — Pl — 0.

n, m—ao

Or we can rewrite it as sup |®,QY% — ®,QV?|2 wn ——0.
Qey 2 n, M—00

Let () € ¥ be an arbitrary fixed.
In the classical case the space L = Lp(QY?(U), H) with the norm
|7, := Tr[@Q®] = |@Q"?[7, 4 is Banach (see [32, 4.2]).
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(R
It implies that &, e X P9 ie: [9,QV7 — CDQQl/QHLz(U,H) — 0.
n—aoo

n—00

Therefore sup [2°QY2| L,um < Co,

and also Scit) |2,QY2| L,um < Co. (+)
If uwe Uy fﬁin by the definition we have:

WS e QVAU), Qe s, f gz < -

BECR

It follows that ®,u; —— ®@y; , and we can get that

n—00

[Pnuiln —— [ @9
n—0o0

Define du: LS ST iy,

For this reason we need to show that the series converges in the H-norm
and that ®u is well defined:

0 Lm. Fat 0
(a) Consider Y [®%uy < lim 3 |®nu

=1 nHOOz 1

— lim 3 [0,QY2Q Puilk < lim S 19,0z - 197 2uily

n—a0 =1 n—a0 =1
(* e
< C() Z HuZHQl/Q < 0.
1=1
Taking inf we get that ||[Pu|y < Cp - |u|uy -

(b) Let ul HUZ v; is another representation.
1=1

Note that Z (u; — v;) = 0 in the U-norm,
i=1
and by Rem.4.4 the series also converges to zero in the Uy -norm.

n 00]
It means that | 3w —v)loy = | 3 (= o)ly — 0. (#)
=1 1= 7’L+1 n—

Consider || Z PQiyy; — Z Py = | Z O (u; — v;)||n

=1 =1 =1

< Z |o% uz—vz)HHJrHZCDQZ( = vi)|n < e+ lim HZ‘D (ui — i) [n

z n+1

/

~~

(a): \0, n—oo
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n Lm.4.6, (#)
< e+sup [P pus,my Il 20 (wi—vi)|luy, < e+sup [Py 5 <e+Coe.
i=1

m=1 m=1

Q0 Q0
So we have Y ®@u; = Y &%y, and ®u does not depend on the
i=1 i=1

representation.

(c) Also <I>|Q1/2<U) = @Y

Because, if v € Q}Q(U) N 5/2(U), Q1, Q2 € X then
Py = lim D,v = Py .

n—ao

So we can conclude that for every wu; € QZW(U) . Py, = D, .

And we have that & is defined correctly.
It is also clear that ® is linear, and boundedness follows from (a).

Now let us turn back to the Cauchy sequence {Cbn} , so that:

Ve >0 IN Vn,m> N : [2,QY? - ®,QY?|,un <c VQeI.
Letting m — oo yields |®,QY? — (IDQQl/zHLZ(UH) <e VQeX.
Or we can rewrite and obtain that:

Ve > 03N Vn,m > N : sup|®,QY% — ®2QV?|,um < ¢
Qex
What implies that:

Ve > 03N Vn,m > N : sup [®,QY — QY| ,um < ¢
QeX

And it is the same as ||®, — @[ » — 0.
n—0oo

4.5 Existence of G-normal distribution

Consider the G-PDE (P0). For the following calculations we change a
time ¢t — T' —t and obtain the analogous G-PDE.

_ 2 .\ .
{atu G(D2u) =0, te(0,T], zeH; >0

u(0,z) = f(z).

Note that all results for viscosity solution to the G-PDE (P0) are also the
same as for the (P’0). So, we can fix u = u/(t,2) as a unique viscosity
solution to (P’0).
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Lemma 4.7 (Some properties of the viscosity solutions of (P’0)).
1) u“f(s")(t, ) =ul(t+s,1);
2)if f=C then v =C;

3) uf @A) (1, 0) = uf (VA)(1
4) wM =l A=0;

5)if f<g then u/ <u9;

6) /™9 <ul +u.

Proof.

We will prove just the 1), because the rest items can be straightforwardly
checked implying that u/(¢,z) = E[(x + B;)].

Let us consider a boundary condition u(0,z) = u/(s,x).

We can carry initial point "0” to "t" so that w(t,z) = u/(s +t,z). On
the other hand wu(t,z) = u“f(s")(t, ).

What implies that u“f(s")(t, r)=ul(t+s,1).

) =u/ O\ z), A=0;

Theorem 4.2. Let G(-) is a given G -functional.
Then:
1) There ezists & ~ Ng(0,%);
2) There exist a sequence {&;, 1 = 1} such that for every i
§ ~ Na(0,8) and &1 L (&,.--. &)

Proof.

1) This part of the proof is similar to 1-dimensional case (see [72, 11.2]),
however there are some specific moments, which compel us to bring it with
all detalil.

Ifiet us considez the following spaces:

Q:=HxH, H:=C,rp(HxH) and w:= (z,y)e HxH.

Define a functional E[ -] in the following way:

for a fixed 1 € C,;p(HxH) and for an element X(w) := ¢(z,y) € H

we have:

E[X] := u’V(1,0), () = ¢)(1,0).

It is clear that a functional E[X | is a sublinear expectation:
(a) X=2Y = o¢=2¢ = w=uw = EX]|=E]Y];
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Using Lm.4.7,2) we have fﬁj[go(ﬁ)] =u¥(1,0) = Iﬁ[gp(n)] :
Hence & ~ 1.

Also IEW(SJ?)] _ u[uw<m,->(1,0)](-)(170) = IE[]EW(O&)U)]OF ]
Therefore & 4 n.

For a fixed function ¢ € C,1;,y(H) consider v(t,x) := u?(\, T + V),
where A >0, zeH.

It implies that v(0,2) = u?(0,Z + A\x) = ©(T + \r) = (T + VA z),

and v — G(D2,v) = X o — G(AD2, u?) = MOu? — G(D?, u?)).

Le.,v(t,x) is a viscosity solution to the equation

ZT

ow—G(D:v)=0, te(0,T], z€H;
v(0,2) = (T + VA1),

By Lm.4.7,3) we have E[o(Z + VAE)] = u?@HVA)(1,0) = u? (X, z) .

~

And E[p(vE€ +/sn)] = [ [@(\/%x-l—\f Mlee| = B|ut(s,vE)],_|

= B[ (s, V1) = ™ (1,0) = it 4 5,0) = Blp(VE+ 5]
And we can conclude +/t¢ + \fn Lt s€.
So that &,7n are G-normal distributed.
2) The case i = 2 is already proved in 1). Assume that it holds also for

some ¢ > 2 and let us pass to 7+ 1.
Le., let there exist (&1,...,&), such that & ~ Ng(0,%) and

fj 1 (517- . '7€j—1)'

We denote the next spaces as followg: N N
Q0 = Hx,...xH, H:=C,L;(2D).
—_——

1
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Take a space Q0D | o= (2,y) e Hx Q0|
And defining in the same way ¢(w) = &(x,y) := x € H;
n(w) = n(z,y) =ye QW
we can proceed the same reasonings like in 1), we obtain what we need,
namely, that there exists a &1 :=¢ and (&,...,&) :=n, such that

§i+1 ~ NG([)) 2) and £i+1 A (517 cee 751) .

Theorem 4.3. If G - is a given G -functional and
u(t,z) == Ef(x + T —tX) is a viscosity solution to equation (PO).
Then X ~ N(;(O, Eg) .

Proof.
Since w is a unique viscosity solution to equation (P0) by Th.4.1 then
u(t,x) =Ef(x+ Br—y) = Ef(z + /T —tX), where B; is a G-Brownian
motion with a covariation set ;. Note that /T —tX ~ Bp_;, where
X ~ By ~ Ng(0,%¢).

]

Remark 4.6.
Let X ~ Ng(0,%), then (-X) ~ X.
Proof.
1
Gx(A) = §E[<AX, X)] =G _x(A), and it means that

F_x|e] = u(1,0) = Fx[p].
0

4.6 Existence of G-Brownian motion and notion of
G-expectation

Let U,H will be Banach spaces. Recall (see 2.3) that
Crip (UH) i= {1 U= H | io(2) = ()]

<C- U+l + lylg) - Iz = ylo}
Later on we will need a bounded subspace:
Cb,p.Lz’p (U, H) = Cp.Lz'p (U, H) M Cb (U, H) .
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Let Q = {w; : [0, +20) — U | wy = 0, w;—continuous};
G(-): K¢(H) > R is a G-functional.

Bi(wg) := ws‘sz . 1s a canonical process;
sz(Qt) = {@(Btm .. ) | n = 1 tla wylpn € [Ovt]7 2 € Cp.Lip (Un7L22)}7
Lip(€2) == {J Lip(€).

n=1

Remark 4.7. If X € Lip(Q)) then ]E[HXH%] <o, p>0.

Proof.
We will use such a trivial fact:
Va>0 Ym>0 IM>m 3IC>0 : a(l+a™) <C(1+a).

It means if ¢ € C, i, (U" L) then
& M/2
i, )l < C - (L G, o m)lfh) = € (14 (X Hazkua) / )

So that, ¢ is a polynomial growth function.

We also have

X =By, ..., B,) = (vt XD, Vi, X)) = XD, XM,
where By ~ X*) ~ N4 (0,%).

Hence |X[ = [B[75(X),..., XW),

and H&H% : U” - R is a polynomial growth function.

Therefore E[|X[f] < C~E[(1+ i \X(k)W)] <C-(1+ i E[|X®[3)
o = Prop.2.4
< .

[]

Proposition 4.5. Under settled above conditions there exists a sublinear
expectation E[y( - )| = F.[¢] : Lip(Q) — R, such that B, is a G-
Brownian motion on (Q, Lip(2), E), where ¢ € Cp, 1 (L) .
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Proof.
Let (Q, H, IE) is a fixed sublinear expectation space.
According to Th.4.2 we can construct on this space the sequence of G-
normal distributed random variables {&, 1= 1}, such that &1 is inde-
pendent from (&1, ..,&;).
If VX € Lip(Q2) then it can be represented as follows:
X = @(By,...Bt,) = ¢(By, — By, .., B, — By, ,) .

for some ¢, pe C,rip (U, LY), 0=ty <t; <...<t, <0,
For every 1 € C, ;) (L3) define
E[¢(X)] = E[¢ 0 ¢(By, — By, -, By, — By, )]

= B[ 0 oW =01, s VEr — T 1 60)]

Since E is sublinear expectation then IE also satisfies all the properties
of sublinear expectation.

In order to prove that B, is a G'-Brownian motion we use Prop.4.1:
Gp,(A) = B(AB;, B = B{(AVt &1,V &) = t E(AE), &) = t B(ABy, By)

CEAWEB)NVEBY) = Gy (A).
So that B; ~ v/tB;.

Consider u(t,z) := E[f(v + Br—y)| = E[f(z + VT — t&)].
Since & is G-normal distributed then w(¢,z) 1is a viscosity solution to
the equation

dwu+ Ge (D2u) =0, tel0,T), xeH;
u(T,) = ().

But G& (A) = ]E<Afl,€1> = E<ABl, Bl> = GBl (A) .

It follows that w(t,z) is a viscosity solution to the equation

w(T,z) = f(z).

And we can conclude that B; is G-distributed.
So, using Prop.4.1 it implies that B; is a G'-Brownian motion.

{atm Gp(D2u) =0, te[0,T), zeH;
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Definition 4.7. Such sublinear expectation E wnll be called G -expectation.

In the same manner we can define related conditional G -expectation with

respect to (2;:

For X € Lip(2) which can be represented in the following form

X =¢(By, — By, .., B, — By, ,), where @€ C,p; (U L),
O=t<th <...<t, <0,

we have the next definition:

Definition 4.8. Conditional G -expectation E[- | €] is defined as

E[lD(X) ‘ Qtj] = X(Bt1 — Bto, . Btj — Btj—l)’

where X(xla 7x]) = E[@/} o 90(1:17 vy Ljya/ tj—!—l - tj fj? oV tn - tn—l fn)] ’
Ve CpLip (Ly).

Remark 4.8. Since ¢ and 1 are Lipschitz with a polynomaial growth then
X 1S also Lipschitz with a polynomial growth.

Hence X(Btl — Btoa . Btj — Btj—l) € 7‘[0 .

Let us define a space L () to be the completion of H under the norm
|- =E[-].

Thus we will consider an unconditional G -expectation with values in the
complete space:

E[(X) | Q] : Lip(2) — LL(Q).
Remark 4.9. Actually, we apply the definitions of conditional and uncon-

ditional G -expectation only when o = | - 7.
2

Let us define the following space:
Lip(Q) := {gp(BtQ —By,..Bi. —~B.)|n=>1 t,. t,e K,

¢ € CyLip (u, LQZ)} .

Since a conditional G'-expectation E[- | ] relates to a sublinear expec-
tation E[-], we can conclude that E[ - | €] is also a sublinear expectation.
The following properties are trivial consequences of the definition:
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Proposition 4.6. Let X € Lip(Q), Zy € Lip(Qy), Zy e Lip(Q'),
2SS Cp.Lz’p (Un, L%:) .
Then the following equalities hold:

(1) E[E[p(X) | Q]| Q] = E[@(X) | Qs ;
E[E[¢(X) | 4]] = E[e(X)];
(Z

(2) Elp(Z1) | 4] = o(Z1)
(3) Elp(Z2) | 4] = E[p(Z2)] .

Remark 4.10. Due to this Prop.4.6 and its properties (2) and (3) re-
spectively we will call the variable Z; as ) -measurable, and Z, as
independent from (), .

Now we are going to describe an extension of the G'-expectation on the
completion of the space Lip(€2). We will make such completion under

the norm | X[5, 5 = E[]XHIEE], since this norm on Lip(f2) is finite by
Rem.4.7.
Denote "L7,(Q2) = compl(sz( ), E[[- 17 ])

Proposition 4.7. G -expectation E[| - ["5] : Lip() — R as well as
conditional one E[] - Hig | Q] @ Lip(2) - L&(Q) can be continuously
extended to the space MLY,(€2).
Proof.
If X e"LY(Q) then there exist X, € Lip(Q), such that

E|1X - X[, ]—;@;o

Here we take p > 2 because the case p =1 is trivial.

1) Firstly we show the following convergence (which we use for the exten-
sion):

p

Al

E[1X175 | - E[1xa07, |
E[1X = Xalzg - (1XI25" + -+ 1Xal25")

<E||IXI%; - 1%

62



1/2

1/2
< (E[X—XnigD - (E[mz;sw + Xni{g”)])

1/p
<C- (E[X — X&;]) —— 0.

n—ao

2) Now it is enough to only take the more general case with a conditional
G -expectation. We consider an operator 7' on the space Lip(2), such
that TX, = E[| X}y | 2]

Let us define TX := lim TX, if E[\TX - TXn|] — 0.

n—0oo n—aoo

Now we are going to show that the sequence (7X,,) is Cauchy in L ().
Consider E[\E[\\Xny\§§ ]~ E[| Xl | Qt]u

Prop.4.6,1)

1 1/p
<C- (E[Xn - Xmi%]) — 0,

n,Mm—>00
since the sequence (X,,) is convergent in "LY, (2).

So, we have that lim 7'X,, exists, because L;({2) is complete.
n—aoo

If we take another sequence (Y;,) of elements from Lip(£2) such that (TY;,)
converges to T'X , then we have

E||T7X, - TV,|| <B||TX, - TX]|| + B|[TY, - TX|| —> 0.
And by Lm.4.1 we see that TX,, =TY, q.s.
Thus we have an extension of conditional G expectation to "LZ, (Q) :
E[HXH% | Q] = AEEOE[HXHH% | ] in LL(Q) norm.
[]

Remark 4.11. From the definition of the operator T in the proof of

Prop.4.7 and by passing to the limit, one can easily seen that Prop.4.6

holds for extended conditional G -expectation on ML, () for ¢ = |- 175 -
2
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4.7 G-expectation and upper expectation

In this chapter we consider a notion of an upper expectation and compare
it with a G -expectation in order to see how they are related to one with
another. Later on we deduce see that they coincide on a considered above
Banach space HL% (Q) . The material for this theory is taken mainly from
[36], where was considered only one-dimensional case. So, we follow this
reference in order to give detailed description of the material in infinite
dimensions. The proofs will be given only those ones that differ from the
one-dimensional case, in the same time we will only point out those ones
that can be just repeated.

In the next chapter dedicated to the construction of stochastic integral
with respect to G-Brownian motion we widely use such a space HL% (Q)
for it. There for a correct representation we shall be sure that HL% (Q) is
not just an abstract completion of Lip(2) under the norm E|| - lezz] , but

a space of random variables.

Let (2, F,P) be a probability space,
where ) = {wt : [0,40) - U | wy =0, wt—continuous}, the space of
continuous traJectorles as mentioned above. W, is a cylindrical Wiener
process in U under the measure P. F; := o{W,, 0 <u <t} v N, where
N is the collection of P-null subsets.
Fixing Y -set we define a G-functional, i.e. G(A) = %sup Tr[A - Q.

Qex
It follows that there exists a bounded closed set © of Hilbert-Schmidt

operators, such that > = {Q| Q=~-~", ~ve @} and
1
G(A) = zsupTr[y7" - A].
2 ¥€0©
Let us define a following set of random processes

APp :={0,: Q- O] se[t,T] < [0,0), 8, — (F;)-adopted} .
T

Since 65 € © it follows that §Tr[f,0]]ds < 0.
i

For a B-continuous function ¢ € C, 1;,(U") let us consider such a func-

T
tion wv(t,x) := sup EP[QO(.%'-FB%Q)], where B?e = (0,dW;, 05 A9,
0 AL, t 7
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t
Remark 4.12. Let Py be a law of the process B?’o = S@s dWs. Py is a
0

probability on Q = {w; : [0, +90) = U | wy = 0, wy—continuous} .
FElements of Q are Biy(w) = w;.
So, we have

Eple(BY’,...,BY")| = Ep|¢(By, ..., By,)]

Note also that Bf’e = Bf’e — B% by definition. Also in the same manner
we denote that B} := By — B;.

Theorem 4.4. v is a viscosity solution to the G-heat equation:
0 G(D? v) =0;
{ tU + ( xxv) ) (11)

v(T,x) = p(x).

Proof.
The proof completely coincide with the finite dimensional case (see [30,
Th.47]).

[]

Here we have that:
v(0,z) = sup Ep|p(z + B%e)] = sup Ep,|¢o(z + Br)| = E|p(z + Br)],

0eAS 1 0e AL
since such a viscosity solution is unique by Th.3.2.
For the future work we need the following auxiliary result that generalizes
dynamical programming principle:

Lemma 4.8. Let ( € L>(Q, F,,P;H), 0<s<t<T.
Then Yo e Cprip(HxUxU — R):

ess sup Ep[gp(C,Bf’g,B?e)’}"S] = e85 Sup Ep[w(C,Bf’e)\Fs] ,
0eAS 0 A2,

where ¥ (x,y) = ess sup Ep[p(z,y, By)|F,] = sup Ep[e(z.y, By")].
0eAPr O A,
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Proof.
If ¢ € Cy prip then the proof of this result is completely according to the

finite dimensional case, see [306, Th.44].

Let ¢ € C, 1ip. Hence, the truncation ¢, := ¢ - Ijj,<py + 7 - ‘—90| Ly jp|>n)
¥

satisfies the statement of the lemma. Also, it is clear that ¢ € L1 w.r.t. P

(because of the gaussianity of Bi*?). (*)

And it remains just to estimate the following expression:
el F] = Ee[ea( || < Ep|[o() = ou()] |7
(%)

= EP[(W( ) —n)- 1{|so|>n}!fs] < EP[IsDK ) - Il{|¢|>n}}Fs] L0, by
the dominated convergence theorem.

[]

Proposition 4.8. According to the imposed above notations there holds

E[e(B),.... Bl )] = suwp Ep[e(B’,... B

0e AL 1
= Sup EP@ [SO(BEN ) Bf:_l)] ’
0eAS 1
Proof.
Firstly, we know that v(¢,0) = E[p(B%)] = sup Ep,|[o(B%)].
fe AP,

Now we increase the number of points:

1) sup Ep[p(Bf, Bl)] = sup Ep[e(B,", B")]

9€A8t2 96A8t2
0,0 t1,0 Lm.4.8 t1.,0
= sup Ep[o(B), B )|R) " sup Bp| swp Eplp(a, 8L |
e A, 0 AS,, OeAp ., z=By

~E[B[p(, 8] | - E[E[e(5], BL)]]|.

2) sup Ep[p(B?, Bl B)] = sup Ep[p(BY, B Bi*")]

tg Y
0 A, 0 A,

= §9 = [9/7 9”] = 9/1[0’151] + 9”]]-[t1,t3]§

_RO
r=By
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— sup sup EP[EP[ (B?f’,Bf;’a B2’ ‘]:tl]]
0/eAS, 0'cA

t1,t3
= sup Ep| swp Ep[o(B), B, B:")| 7 ]|

/ <) " (S)
0°eAg,, 07 €A ¢,

ta
(t1,ta] € [5,T], B’ = §0,dW,

J— tl
- t1,0 t1,0
= sup Ep [@(Bt; )] = Ssup EP[SO(Bt; )]
QEAST GEAg to
Lm.4.8 t ,9
= sup EP[ sup Ep[ sup Ep[@(.% y,BQ )] xBO’el]]
9/€A0@,t1 6‘//€At®1 49 9 e Ag " :19”
— :Bt;}
t
= sup FEp| sup FEp [E[QO(«T, Y, Bt;)] x_Bo,e’]
0'c A9 | 07cAP Th
0,t1 t1:t2 t1,6”
y:BtQ

= sup FEp E[E[SO( szlaBt2)]’

|| = E[ElwB), BL. B2 |
9’&4&1

0,0
r=B;" -

3) So, up to now we saw that the statement of the proposition holds for
n=123.
Assume that it is OK till £, 1 and let us pass to t,:
n-— 07(9 tp— ,0
sup Ep,[p(BY,...,B" )] = sup Ep[p(B.°,....B," )]

0eAQ 1 0 AP,
= §g;: (BE;",...,Bfgjﬁ)efn_2§: sup Ep[p(¢, By, By )]
0c AP,
— the same_yyhen n=3 _—_ sup EP [E[go(x, B;;nfl%e, Bfnflva)] ¥ . , ]
6eA9, " e=(=(B{...B" 2"
4 n—2 n—1 ~ s n— ,9
= §so<<> E[p(¢, By 1,Bn >]§ = sup Ep[@(B),... Bl )]
0eAS,
induction ~ n— n—2 n— 1
N E[B(BY, .., B = E|E[e(x, B B <]
=E[p(BY, ..., ;1)].
[]
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Proposition 4.9. The family of probability measures {Pg, 0 € Ag)po} 15
tight.

Proof.

The proof is the same as in finite-dimensional case (see [36, Prop.49]).
L]

Now let us consider the following spaces:
e L°(Q): the space of B(£)-measurable real functions;
) L%QE(Q): the space of B(L3)/B(Q2)-measurable 2 — LY mappings;
o Bry(€2): all bounded mappings in L%(Q);
o CUB;3(Q): all bounded and continuous mappings in LOLE(Q) :

Definition 4.9. For a random variable X € L°(Q) such that a linear

(classical) expectation Ep exists for all P € P an upper expectation of
P is defined as follows:

E[X] := i};g Ep[X].

Later on we consider such a set of probability measures

P = {P@, 96./48)700}

Remark 4.13. [t is clear that on the expectation space (2, BLg(Q),]E) as

well as on the (€2, CBLg(Q),]E) the upper expectation E[-] is a sublinear
expectation.

Remark 4.14. For a G -expectation & by Prop.4.8 we have that
E[¢(X)] = E[¢(X)], X € Lip(Q), ¢ e Cprip(Ly) .

L _
For X e Long(Q) we define the norm [ Xy, , = E[HXH%] .

= T ~-11P .
Therefore |X|%, := E[IX ;5] = E[|X[7,] = [XTx., . X € Lip(©).
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Define the following spaces:

o [P .= {X € LOLQE(Q) | EHXHZZ < OO};

N = {XELOLQE(QHX:O ¢-qs.};

LZE = LP /N

L, . is the completion of B () /N under Wz’ )

o L7, = is the completion of C'B;»(2)/N under W&p.

Remark 4.15. Similar to the classical arguments of LP-theory we can
conclude that (I}, |- |5 p) is a Banach space.
2 )

g e TP p p
So we have the following inclusions: L, Bz © IL < L 13

Proposition 4.10.
Ly = {X e Li:(Q) | lim B[|X|E; - Tyx),pom ] = 0}

Proof.
There is no changes with a proof for a finite-dimensional case (see |
Prop.18]).

9

]

Definition 4.10. A mapping X on Q with values in a topological space
is said to be quasi-continuous if for every ¢ > 0 there exists an open
set O with capacity c(O) < e, such that the restriction of mapping X
to the complement O° is continuous.

Definition 4.11. We say that mapping X on Q has a quasi-continuous
version if there exists a quasi-continuous mapping Y on §2, such that
X =Y quasi surely.
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Proposition 4.11. If X € ]L%B ;= then X has a quasi-continuous ver-
12

S10M.

Proof.
There is also no changes with a proof for a finite-dimensional case (see [30,
Prop.24]).

[]
Proposition 4.12.
Lo s = {X €Lz (Q) [ X has a g.c. vers, lim B[ X7y Tgx), pon] =0}
Proof.
For this proof we follows [36, Prop.25], but here there are some difficulties

when we pass to infinite-dimensions. So here we give the whole proof with
all details.

Let us denote a set )

A:={Xe LOLQZ(Q) | X has a q.c. vers., T}EQO]E[HXH% : ]I{I\XHL§>H}] = 0}.

1) If X € ]L%B ;= then by Prop.4.11 we have that X has a quasi-
=2
continuous version.

Also for X € L%’Lzz by Prop.4.10 we have nh_r}gO E[HXH]EQE.I]'{HXHL§>H}] =0.

So we can conclude that X € A.

2) Every X € A is quasi-continuous.

Take the truncation

X
X, += Trune(X,n) = X - Lyjx,gzn) + 70 X Ljixp>n}

— _ n P
fence B[1X — X1 ] = B[IX 1y - (1= ——)" 2wt o

<E[|X]7; - Lyxj,pom] — 0.

n—ao
Since X! is quasi-continuous then there exists a closed set A, , such that

c(AS) < s,
For the following step we need to use the Dugundji theorem (the infinite-
dimensional version of the Tietze extension theorem):

and X, is continuous on A4,,.
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Theorem 4.5 (Dugundji). [0/, Th.1.2.2.].

Let L be a locally convex linear space and let C < L be convex. Then for
every space §2 with closed subspace A, every continuous function f: A — C
can be extended to a continuous function f:§ — C.

As is known that every normable space is locally convex it follows that the
Banach space L3 is also locally conve.

We have | X5y < [ Xzp - Taxipany + 7 Lyx) pon < 7

Define a set C,, := {Y € L} | 1Yy < n}.

So that X!|, : A, — C, is continuous.

By the Dugundji theorem (Th.4.5) it follows that there exists a continuous
extension X, :  — (), , which satisfies the following:

X'n S CBL%(Q) ;
X! = X, on A,,
| Xnlls < n.

Hence ]E[HX}; — XnH}ZZ;] < ]E[(’Xviig + HXnH%) ' H{Cn\An}]
2n? 2

< 2nP - c(AS) = =———0.

And we have ~ _ ~
B[ — %, 1%,] < 2 (E[1X - X[8,] + B[IX: - £,13,]) — 0.

n—0o0
p
So that X e IL'CB,L§ :

]

71



5 Stochastic Integral with respect to G-Brownian
motion

5.1 Definition of the stochastic integral for elemen-
tary integrand processes

Recall that

Lip(Qr) == {gp(Btl, B n=1, t oty [0.T], ¢ €Cprip (un,LQE)}.

For p > 1 the space "LY,(Qr) is the completion of Lip(€2r) under the

norm | X2, = E[|X[%]

Hold the notation |- |x := || X|xs 2.

Since HL% (QT) is an abstract completion we need to show that it is a space
of random variables what provides the following theorem:

Remark 5.1. Let us denote the following subspace of Lip(Qdr) :

BLip(Qr) = {@(Btl, B =1t ot e [0,T], € Coyprip (U”,L§)}.
And the space HBL% (QT) be the completion of BLip(Q2r) under the norm
|XI5 , = E[I1X]75]-

Then we have that HBL% (QT) = HLZ (QT) .

Proof.
If X e "7 (Qr) then there exists a sequence (Xj) < Lip(€Qr), such

that E[|X — Xujy] —— 0 and E[|X,[}5] <.
Take X' := Trunc(Xj,n) € BLip(Qr).
Therefore HX—X,?H%I) = E[HX—X,?H%] < ]E[HXH]Z%; ' 1{|\X|\L§>n}] — 0.

n—ao

So we can deduce that compl(BLip(QT), |- ng) =2 (Qr).

Theorem 5.1.

L% (Qr) ={X e LoLzz(QT) | X has a q.c. vers.,
Tim B[ X7y - Tyx),pom] = 0}

Moreover, if X € "LL(Qr)  then E[HXH%] = E[HXHZZ]
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Proof.
Let ® € CBiz(Qr), ie. @ : Qr — L3 is bounded and continuous

L3 -valued random variable.
Take a compact set K < Qp = {w; : [0,7] — U | wy = 0, w;—continuous}.

We claim that & be uniformly continuous on K .
In fact, since ® is bounded and continuous on the compact set K then

for every w € K there exists a subsequence w,, —— w, such that
(R I=E

Blan,) —> D). (+)

If @ is not uniformly continuous on K then 3¢ > 0 Vo, | 0 Vw,, w,, € Qr,
such that [w, —wpllo <d and it follows [ ®(w,) — ®(w;, )|y <e.

Let us take two different subsequences: w,, —— w and W, — w.
7o & j—00

Sothat 35 Vj>j: |w, — wy o < 0n,
/
Hence & < |®(wy;) — ®(wp,)| 3
(+) L

< [@(wy,) = @(w)lzy + [P(wr,) — P(w)]zz — 0, a contradiction.
Therefore Ve >0 30 >0 Vw, w' € Qp, such that |w—w'||q <0 and
it follows [®(w) — ®(w')|z <e.
Take a partition m, = {0 =t} <... <ty =T}, |m|:= max. it —t7.
Then for every w e K m,w is a linear approximation of w at the points
of the given partion m,, i.e. mw(t!) = w(t!).
Define ®,(w) := ®(m,w) = O(t7, ...t} ) € BLip(Qr).
Owning to the Arzela-Ascoli theorem we have that K is an equicontinuous

set: Ywe K Vd>0 d»x>0 Vi, t'el0,T],such that |t —1| <
and it follows |jw(t) — w(t')|u < 0. (#)

Now for a fixed t € (¢;,t;41) we have

t—t tiy1 —1
i) + ().
liv1 — t; (ti1) tiv1 — t; (t:)

Let  |m,| :=mn < s then let us calculate
[ (t) — w(t)]u

t—t;
tiv1 — i witi1)

Taw(t) =

tip1 —t
tiv1 —




t—t; tig —t

< Nw(ivr) = w(@)u + 77— lw(ti) — w(@)]u
tz+1 t t2+1 tz
#) t—1; tiv1—1
‘) L SN S S
lit1 — i lit1 — i
Hence |mw —w|q= max |mw(t)—w(t)|y <.
te(titiz)
1<i<N,

It means, Ve >0 3n> 0, such that |7, <n and it follows
|®(mnw) = W)y <&
Since \7rn| —— 0 then sup|P(w)— P, (w)|z — 0.
—0 wekK 2 n—ow

Recall that E[-]:=sup Ep[-] and P is tight (Prop.4.9).
P

It follows that for every m > 1 there exists a compact set K,, < €2,,, such
1

that ¢(K¢) < —.
n
Therefore V® e CBs(Qr) 3, € BLip(Qr), such that

1
sup [ B(w) — By (w)p <
wekK, n
_ 1
So that E[|® — @[] < sup [ 9(w) — @, ()|} (K5) + - e(Ky)

wef) —

<0

1
- (Co+ )—>O.

n—ao

3

Hence @ €MLY (Qr).
It is clear that BLip(Q2r) = CBrz(Qr).
So we have the following inclusions:
BLip(Qr) < CBrz(Qr) < "Ly, (Qr). (o)
Recall that ]I%B = compl(CBrs /N, WE,]))
{X e LL§( ) | X has a q.c. vers., AingoE[HXH%-H{HXH%M}] =0};
Ly = L7/N = {X € L} (Q) | E| X[} < oo}/N.
But ]E[HXH’E22 - ]l{HX|\L§>”}] — 0 so that IEHXHZQZ < 0.

Pro&4.12
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Then by (o) we have HLL(Qr) = Compl(CBLg/Na WE,]))
— {X € £7| X has q.c. version, lim E[|X[", - 1jx) ,ony] = 0}
n—>00 2 Ly

= {X € LoLg(QT) | X has q.c. version, T}l_r)lolo ]E[HXH% - H{I\XI\L%:W}] = O}.

If X € Lip(Q) then E[|X5] = E[|X].
Since "Lt (©r) = compl (BLip(Qr). E[]-[])
~ compl(BLip(2r), B|-15]).

It follows that for every X € "L7.(Qr) : ]E[HXH%] = IE[HXH%] :
[

Now we need speak a couple of words about convergence in HL% (QT) un-
der the G-expectation. The biggest problem is that a dominated conver-
gence theorem is not true in a given framework. But there is a result of a
monotone convergence theorem (see [36, Th.31]). It has a trivial infinite
dimensional extension which we will represent as the following theorem:

Theorem 5.2. Let a sequence {Xn} c HL% (QT) be such that X,, | X q.s.
Then also holds E[|X,["s] L E[|X]".].

So we are ready to define a space of the integrand processes:

N—1
Let "ME"(0,T) = {‘P@ = 20 Pr(w) L) (@) |
k=0

@k(w) € HL%(th), 0= to<ty...<tny = T}

For an elementary process ® e HMg’O (0, T) the stochastic integral we define
as follows:

T N—1
J ®(t)dB; = 2 ®.(By,,, — By,)
J —

T
Remark 5.2. It is clear that ~ { ®(t)dB; = S<I> YdB;_o, a€R.
0

Remark 5.3. For a fived t we have that ®(t) € LOLQE(Q) then we can see
that It(®) is an H -valued random variable.
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5.2 Ito’s isometry and Burkholder—Davis—Gundy in-
equalities

Let B, is a given G'-Brownian motion with corresponding G -expectation
E which coincides on the space LOLE with an upper expectation defined for
2

the family of gaussian probability measures P:

E[X] = E[X] := ?DEEEP[X] :

If we fix a measure P € P then we can define Ep[X] := sup Ep[X],

PePp
where Pp = {P}
Actually, Ep[X] is a classical linear expectation, but we could treat it also
as sublinear with the all properties for a sublinear expectation.
So, we can define the G-functional for this expectation:

Gp(A) = SE[(AX, X)] = STH{A- Q]

for some non-negative symmetric trace-class operator ()p, because func-

tional Ep[X] is linear.

1
On the other hand Gp(A) = 5 Sup Tr[A - Q], where YXp c X.
QEeXp
Therefore Yp = {Q p} and B; is a classical ()Qp-Wiener process under
PeP, QpeX.

Theorem 5.3 (It6’s isometry inequality).
Let @ € HMCQ;’O (O,T) then

T
[ | o) ani;] < j o0l ] (12)
0

Proof.

1) Firstly, we are going to prove a “weaker” version of the It6’s isometry
inequality, namely that

E[| f 1B} JE ()12 | at (13)
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In fact,

E[ng)(t)dBtHQH]z [ Z_lékABtkya]

Z E|®r AB;, |3 + 2 Z E(P AB;,, ®,, AB; =
k=0 k<n=1
(a)k <n:
Note that in this case for fixed n and k£ we have that ®; AB;, and
AB,; are independent from €2, , but &, is ); -measurable.

Therefore E(®y ABy,, ®, AB; Sy = E[E@k AB,,, ®, AB; | Qtn]
— E(®, AB,,, &, - E[AB, Dy = 0.
——

=0

(b)k =n:
Analogously, AB,, is independent out of €, , but ®; is ), measur-
able.
Therefore E[|@ AB,, 2] = IE[]E[H@k ABtk\a]th]]
Prop.4.6,1)
Prop 5.6, 3)
= E[(tkH — t)) - sup Tr[q)kQCI)};]].
QeX
N-1 T
Sowe have K = 3 B (tr1 — te) - |9l25] = TE[|0(1)]2, |t

k=0

o

N-1
2) If & e"VZ0(0,7) then ®(t) = 3 Bp(w)lpyy s, (D),
k=0
O:t0<t1...<tN:T

and for every k@, € "L%(Q;,) then there exists a sequence
{@,({")} < Lip(y,), such that | — o\

Hzn_)—oo’o'

Define CI) () Z CI) ( ) tk,tk+1)(t)'

Since (ID/,(f " e sz(th) then we can consider

®](<in> - (Pl(cn)(Bu’fv "7Bulﬁnk) € L%? 0< u]f S-S ufnk = 1.
N-1
Therefore IT( SCD t)dB; = Z (I);(ﬂn)(BtkH — By,)

=0
(Buo,. 7BuTNnN) eH, pe Cp.Lip (UmN, H)
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So, we have

{1 160) B.2] = E[Iola (B Bus)] = s En[loli(Bg . Buy, )]

0eAS 1

T
— sup Ep,|| §@0(t) dBy|}]
0eAS 1 0
N 5
= Sup EP@[H Z P (Bukv . 7Bufnk) ) (Btk+1 - Btk)HH]
0eAS 1 k=0
e (n) ; 0,0 0,0 0,0 0,042
= swp Bpl| T o (B B ) - (B~ B
BeAS k=0 ' "
(n) N ), po 0.0
{0000 = 3 By B ) (e — 0
T
— sup EP[H gcp ) B | = sup Ep|| {0 ()0, Wi
GEAOGT 0 A(?T 0
. T
classical It&s isometry sup EP[S ( )(t) ) etHiQ(U H)dt]
0eAS 1 ’
T ) T 2
= sup Fp, SH@ n (t)-@tHL v H)dt] < sup Epg[g sup Hfb(”)(t)-QHL v H)dt]
0eAS L0 2 0e A 0 0 A o
T . 5
= s En[ {sup[S0(6) [}t
0,T
= sup Lp, Ssup |t Q1/2HL2 U,H) ] [SH(I) HLE ]
0e AL 1

— E[§ B0 ()2, dt].

For the finishing of proof we need to pass to the limit:

(a): (E[gcb(t) dBtaDQ - (E[gq)(n)(t) dBti'DQ‘

Minkowski ineq. T
2 (s woyam - fororn any))

1
2

0
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1
2

Nl (n) |2 %
= X [Hq)k_q)k HE'(tk+1_tk)] — 0.
k=0 " “—— n—o

(E[gé(t)%g dt]>2 - (E[§q><n>(t>§§ dt]>2

Minkowski ineq. [T i T 109 3
< (E ‘(§]®(t)][%§dt) —((S)Hcp(n)(t)igdt) D

Minkowski ineq. - T % T
< (E_g@(t)q><n>(t)§§dt]> <<§E[q>(t)q><n>(t)§§]dt>

(b):

N[

: N-1 3
S |©( (B5dt) = X |[|®— <I>,(€”>H2E (tk+1—1k) — 0.
k=0 " Y—— n—ao
- ~
]

The following result (so called the Burkholder-Davis-Gundy inequality) is
a generalization of Th.5.3.

Theorem 5.4 (BDG inequality).
Let ® € "ME°(0,T) then

E[| | o dzilg] < [ f ()3 d ] (14)
0

where Cp, >0, p=2.

Proof.
The proof of the theorem is based on the proof of Th.5.3 and BDG in-
equality in the classical case, described for instance in [32, Lm.7.2]).

When p =2 and C, =1 we just have the It isometry inequality.
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As in the proof of Th.5.3 we hold the same notations:
N-1

O e "ML (0,T) then @) = 3 ®p(w)ly s (),
k=0

O=t0<t1...<tN=T
and for every k @, € "LV,(Q,) then there exists a sequence

{CIDI(;Z)} < Lip(§,), such that HCIDk — 3 )Hz,p — 0.
NoL
@(n)(t) = kZO (Dk (w>]]‘[tk7tk+1)(t) .
o T
Denote I := { ®(t)dB; and I\ := (&™) (t)dB,.
0 0
T p
So, we need to show that E[HITHf'] < Cp- E( { HCID(IS)H%22 dt) : (%)
0

Firstly we show that Vm > 2 E[HITHQ] <
. N-1
B[ |l ] E[|{ Jo() B[] = E[l 5 @A, 1]

N-1
ch-y E[@k ABylp| = CL - ¥ E|El@: ABy | 2
k=0 k=0

Prop.2.4
Prop 2.6, 2) N— m 9 * 2
Sty (ninn)”
N-1 5
¢t X Bl (e =) [2()Ey) " | <o0.
It is clear also that E[\ H ]

Then according to the proof of Th.5.3 we can get that

{1 § 200 4B} = [l el B . By, )|

’H’LN

T
= sup Ep,|lolf(Bug, - Buy,)| = sup Ep,||§ 20 (0) dBi[}
9€A6T ﬂeAgT 0

= Sup EP@[H Z 9014; ( ufs 7Buf?,1k) ’ (Btk-H o Btk)H];]
0eAS 1
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Ny, o 0,0 0.0 0.0+ ||P
= sup Ep|| X o (BY. .. B )- (B, - B[]

0eAQ 1 k=0
N-1
=§‘1>>(kn)(t) = 3 (B, vBOk-ek) (fk+1—tk)§
k:() 1 m
I (n) 0,0 L n) D
— sup Bp|| o) B | = sup Ep|| § 0l ()0 awi]J,]
0eAS 1 0 0eAS 1 0
35Sl inequali T n g
iy (17001 0)
0eAS 1 0 ’
_ " 9 g
= Cy- sup B[ (§100(0) - 017, pt) |
HeAgT - ’

< C,- sup Ep, sup Hq)(n)(t)'eHiQ(U,H)dt)Q]

I 1 1 I 1
VN N /N VRS

Ot N Ot Oty Ot

0eAS 1 0e AL 1
9 P
< C,- sup Ep, sup || @) (¢) -fyHLQ(U H)dt) 2]
0eAS 1 - €O ’
9 P
=C,- sup Ep,|( §sup[@™(t)- QWHLQ(U H)dt) 2]
0e AL 1 eX ’

T P T D
- . D (TL) 2 : — . (n) 2 2
Cy B[ (J100 0 )" | = G, B[ ({lo0)13; )" |
And now we pass to the limit.
< E[MITZ - !fé’”}i\]

<E(ltr =1y (el + 1l 15 -+ fé”)ﬁl)]

(a):|E[ |15 - B[ |75

1
2

Prop.2.
223 <E|:[T_I§1n)2H:|> y
2
X <E[<ITZ1 + H]THZ_2 . HI;H)HH + o+ Hfj(wn)Hf'_l) ])

- -
R

<0

2
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1

to o - ot Tc-(xa[g@(t)—@wu)igdt])

<c. (§E[¢<t> a2, ] dt>2 _c. (f (1) — @) (1) dt)2

1
2

N-1 (n) 12
=C- [ ’(I)k_q)k Hz‘(tkﬂ—tk)] — 0.
k=0 &~ 7 =0

(]E[(?ﬂt)%zdt)g]); (]E [(§romzy o )
(E[( Slo13; )" — (3100013, ))]

MlIlkOWSkl ineq. T b
(E j o) 2 dt)’ ])
0

( [SH<I> O ()5 d ]) (Z(S:Eb(t)q)(n)(t)ig]dt)p
(n) (¢ l

Th

N 'm

(b):

Mi nkowsk ineq.
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Define "M (0,T) as the completion of HMg’O (0,7) under the norm

T P
o1, = E[(g |9 (1)]2 di ] .

Actually, such a norm is finite on 75" (0,T) , because

I, = E[(Nz (b —ti) - ¢<t>;§)’5]

k=0
<G 3 (-1t B[lo0l] ) <=
= —_——

<0

T
Also we denote @[3 = |[9[J3 = E[ § [#(1)13; at].

T
Theorem 5.5. Iy = { ®(t)dB; can be extended on "ML (0,T).

0
And for ® e "ME(0,T) the BDG inequality (14) holds.
In particular, if p =2 the Ito’s isometry inequality (12) holds.

Proof.
We have if ® € HMg (O, T) then there exists a Sequence

{0 n>1} <"ME°(0,T), such that [|& — &Mz, — 0.

Let us define the norm HITHQT p E[|Ir[}] -
And we have |Ip(®®™) — Ip(®0m )HQN, = |Ir(@™ — @M)|q, ,
Th.5. 4 (m)
< G- f|o™ — o7,

So that, we can extend Iy on HMg (0, T) as a continuous mapping.
Define Ip(®) := lim Ip(®™).
n—ao0

Letting m — oo yields 0 < |[Ip(®™) — I7(®)]qa,.p
N I —

Therefore [ Ip(")]o.p —— [ Ir(® )HQTp and (|7, — [|®]|z., -

So we can conclude that |[I7(®)|a,., < Cp - ||P]|7,p-
[]
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5.3 Characterization of the space of integrand pro-
cesses HM(Q; (O,T)

Proposition 5.1. ® € "WE(0,7) < 1)[|®|lr < oo
2)®(t) € "LE () for almost all t.

Proof.
(=)

If & € HM2(0,T) then ||®[jr < oo and there exists a sequence {®,, n >
1} = "2 (0,7), such that [|® — ®,[|r — 0.

It follows that for almost all ¢ we have [P — ®,|s — 0.

(Recall that the norm |- |y is introduced in 5.1).

For such a fixed ¢ = ¢' implies that ®,(¢') = Const € Lip(€Y).

Since (HL%; (), HE> is a Banach space, then for almost all ¢ we have
that ®(t) € "L ().
(<)

1) Let for almost all ¢ ®(t) € Lip(€%) be continuous.
Take partition of [0,7]: A\, ={0=¢t) <t <... <t} =T},
d(A,) — 0, N=N(n) — 0.

N-1

Define @, := Y, @) (w) Ly, ) (t) € M5 (0,7).
k=0

We have @, (t) —— ®(¢t) for all ¢.

n—o0
Let us calculate

0 2 L 2
@ — @2 = IE[H | (D(t) — (1)) dBtHH] < E[§ [(@(t) — @u(t) |5 dt] ,
using It0’s inequality according to Th.5.5.
Then there exists a point ty € [0,7] such that

IE[§ [(@(t) = @) 75 dt| = T B[ (@t w) — @t )3

But the last term tends to 0 according to Th.5.2.
So, we have that ||® — &, ||l —— 0.
n—ao
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2) Let for almost all ¢ <I>(t) € Lip(€) (it is not necessary continuous).
1 +00 1 t

D(s)ds = = | p(===)D(s)ds

€ -9

Define ®.(t) :=

= —§1 p(V)P(t —ev —e)dv.

Hence for all ¢ &.(t+) = &.(t—) = O.(t), so that d.(-) is continuous.
T

Consider A, :=[[® — &% = (||P(t) — D.(1)|3 dt
0

| i p(v)(®(t) — Pt — v — &))dv|% dt

1

(_le(v)dv - p(0)|®(t) — Dt —ev — €)% dv) dt .

= (S)‘
< §(§ sl = 00 =0 =)l )
) )

But for every separable Banach space B we have such a dense inclusion:
C([0,T), B) = Ly([0,T], B),

because every f € LQ([O7 T, B) can be approximated by > fi(t)b;,
|

i=1
where (b;);>1 € B - densely, f; € L2( 0,71, B) :

and such f; € LQ([O,T], B) can be approximated by ¢; € C’([O,T], B),
because it is well-known that C([0,7], B) < Ly([0,T], B) densely.
So, f can be approximated by . g;(t)b; € C([0,T], B).
i=1
Using this fact we have that:
For @ : [0,7] — "L%(Qr) =: B, where (B, |- |p) is a Banach separable

T
space and § [®(¢)|%dt < oo, there exists W5 € C([0,T], B), such that
0

@@(t) w0 < 5.
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1
§ p(v)|®(t) — ®(t — ev — &) |} dodt

-1

T
Therefore ‘A5| <
0

T 1 T 1
<3y § pv = ()5 dvdt + 3§ § p(v)|@(t —cv —¢)
0-1 0-1
T 1

—Us(t —ev—e)|&dvdt + 3§ § p(v)|Us(t) — Us(t — ev — €) |4 dvdt
0-1

T 1
<60 +3( § p(0)|Ts(t) — Us(t —ev —e) | dodt .
0 -1

Hence lirr(1)|A€’ < 60
e—
So that [[® — &.||r — 0.
E—>

3) Let for almost all ¢ ®(t) € L% () .

By the definition there exists a sequence {(Dm, m = 1} c Lip (Qt) such
that |® — &,y —— 0 for almost all t.
n—aoo

As in the 1) part we can get that
2
1© — @13 < T B[ (8(t5.0) — @ (t5.)) 25| —— 0.
Hence [|® = @pflr < [[® = (P)"[l7 + ([P — ()" |7, )
where (9,,)" € H]WG’O (0,7).
0.

From 2) it follows that [|® — &,/
So that ®,, € "MZ" (0,7).

n—ao0

[]

Remark 5.4. If ®(t) is nonrandom then condition 2) of Prop.5.1 can
be omitted:
|@llr <o <= @e™ME(0,T).

Proof.
T

T

I@llz = §I@@)|Edt = §|@(t)[75dt < oo then [@(F)]7y < 0
0 0

for almost all ¢.

From here we can conclude that ®(¢) € Ly, hence that ®(¢) € Lip(€Y)
(since ®(t) is nonrandom) and finally that ®(¢) € "LZ ()
for almost all ¢.
And by Prop.5.1 we get that ®(¢) € "MZ(0,T).
[l
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5.4 Fubini theorem

Let (X,&, ) is a measurable space, u(X) < oo

N—-1M-1

Consider "MZ°(0,T: ) :={ (L) =% 3 i) L (D)L, (@)
k=0 j=0

(IDk(w) S HL%(th), 0= to<ty...<tny = T, Aj Eg}
Let "MZ(0,7;X) be the completion of Y (0,7;X) under the norm
I®flra = § [ 2(-, 2)[|7 p(de).
X

Theorem 5.6. If (t,z) € HMC%(O,T;X) , then:

T
JJ (t,z) dBy u(dx) =JJ<I> p(dr)dB;  q.s.
0
Proof.

Let {®,, n =1} c"MZ"(0,T; %),
Then in the same way as in Prop.5.1 using Th.5.5 and Th.5.2 we can
conclude that [|®(-,z) — P, (-, z)||r — 0.

n—ao

And due to the dominated convergence theorem have that

For every n set ®,(t,x) := Zle_l(I) (W)L gn () Lan(z).
And deﬁne the following randlz)lgl xfarlables.
En(x) = SCD (t,z)dBy, &(z):= ?@(t,x) dB;.
(1) = § Bt ) i) () = § D) )
; N —1 M,—
Then ;§n<x> snn )dBi = 5 jz &, (By, — By )u(AT).

For the later calculatlons we will use a Cauchy-Schwarz-Bunyakovsky in-
equality (Prop.2.3) in a following form E[X] < (E[X?])?:
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((t,z) — By (t, x)) dB, u(da) HH]
O(t,z) — u(t, 7)) dBtHH]
(@(t,2) — Du(t, 7)) dB,[ ]) (dx)

‘H(I)( ) 756) - (I)n( ,SU)H’T/L(CZ:U) — 0.

n—ao

T
And by Lm.4.1 we get that §&(x) pu(dz) = {n(t)dB; quasi surely.
X 0
[l

5.5 Distribution of the stochastic integral with non-
random integrand

I |

T
Let us consider a stochastic integral [(® SCIJ )dBy, with respect to
0

G -Brownian motion B; ~ Ng (O,t : E)
Assume that @ is non-random, then @ : [0,7] — L5 .

Note that also in such a case  "LZ(Q2) = Lip(Q2) = L.
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1) Firstly we consider a case with elementary processes:

N-1
If & e"™2°(0,7) then ®(t) = 3 ®ply, .0, ®r e LY, and the
k=0

T
norm [|@[7 = J[®(t)[7zdt < .
0

N-1
By the definition we have I(®) = > ®y(By,., — By,).
k=0
— B
We know that a random variable —2——"% _ B, ~ N, 0,>).
Vi — T ! G( )

Then using Prop.2.6 we get that [(®) ~ N¢(0,%;),

N-1
where ¥, = { Y (tri1 — ) 0,QPL| Q z} .

k=0
N-1 T
Note that in this case Y] (tg41 — t5)PLrQP; = { O(¢)QP*(¢)dt
k=0 0

2) In a general case we have that for ® € "M, (0, T ) there exists a sequence
{®,, n>1} = "MZ°(0,T), suchthat [|[® —®,[lp — 0.
n—aoo

And by Th.5.5 we get that [[I(®) — I(®,)]lo, < [|® — @, ||7.
Since ® € Ly thenfor p>0 ®e¢ HMg(O,T) and by Th.5.5 it may be

T 4
concluded that E[|I[4] < C, - (g |(t)]2 dt)2 <.

T
Lemma 5.1. S@ QP (t)dt —— XCD )Q®*(t)dt in the trace-class

n—ao0

topology.

Proof.
T
1 — @nflF = S |D(t) — @n(t)[7pdt

g sup Tr| ((1) — @,(1)) Q(®(t) — (1)) |at

QeX

Denote A, := ®,(t)- Q"> and



We have that

Hg@ (1) QP (t dt—gq> ) QO (¢)dt H?(AnA;’;—AA*)dt

0
|4, A5 — AA | dt—SHA A5 AA;+AA;—AA*HL1<H>dt

Ly ( Li(H)

T
S
0
T
< § (142 14 = Auley + [ ALn 104 = 4|0 )
1/2 ) 1/2
(514012, ) -(§\\A—An\\L2<H>dt)
r 1/2 T 1/2
F(TIAR ) - (T14 = Aul, )
T 1/2 1/2
< ®,(0) QY27 ., dt 202 )| x
(((gzgg!( (1)@, ) (SSUPH( 0)QV[], ) )

x (sup [ ((t) — ®,())QV2|? . at
§Qez |(@(t) )R],
- (q)nT + H<I>T) [I® = ullz — 0.

O N

[]

T
Theorem 5.7. Stochastic integral I(®) = [ ®(t)dB; with nonrandom

0
integrand ®(t) is G -normal distributed, where B, ~ Ng(0,t-X) is a
G -Brownian motion. Le.,

I[(®) ~ N¢(0,%7) , where Xy = {g@(t)@@*(t)dt | Q€ Z}.

Proof.
1) From the first part of this section we have got that

I, = I(®,) ~ Ng(0,%y,), where % — {SCD )Q®: (H)dt | Q 2}.

2) Gp,(A) = %E[wn, Iy]: Gi(A) = %EKAI D]
Then 2-|Gy,(4) — Gr(A)| = [E[(AL. )] ~E[(AL D]
= [B[¢AL, 1,)] - B[(AL, )] + E[(AL, I)] - E[¢AL D]
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< )E[<A]n7]n> — <Aln,l>]‘ + )E[<A]n7]> — <A],I>]‘
<EU@UWQ—JN]+EUQNM—I%D”

“(esal) () (o) ()

<4z [(E[Ini]>l/2 ¥ (]E[I}QHDWI . (E[fn - Iﬂ])m

B HAHL(H) ' (H]nQT + H[HQT> | = Iloy — 0.
So that G (A) —— G(A).

n—0oo

We know that G defines a covariation set ¥; of the I(®).

3) Now we are going to proof that I(®) ~ Ng(0,%;).

In order to show such a fact we consider u,(t,z) := E[f(z + VT —t1,)]
and u(t,x) :=E[f(x+ T —tI)], with a B-continuous function

f € Cpsz(H)a
Since I, ~ Ng (0, Zjn) then by Th.4.1 we have that wu, is a unique

o+ G, (D2u) = 0;
viscosity solution to the equation w + G, (Dyu) ’ (%)
u(T,x) = f(x).
So, we need to show that u is a viscosity solution to the equation
dru+ Gr(D?,u) = 0;
—~ (#)
u(T', x) = f(x).

(i) We claim that for every fixed point (t,7) :  un(t,) — u(t,).
In fact, |un(t,2) — u(t,z)| = )E[f(x VT —t1)] - E[f(z + mf)])
<E“ﬂx+v7—thy—ﬂx+v7—tDﬂ

< E[c (U o+ VT =L+ o+ VT — 1|7 - VT = E(1, — z)HH]
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) 1/2
<C- (E[(1+x+\/ﬁln{,”+x+\/ﬁlﬁ) ]) X

x<avtyE[@uﬂ>m

<5'H]n—]HQTTH—OO’0-

(ii) Also we claim that wu,u, are continuous at (¢,z) € [0,T]xH.

In fact, let us show that E[f(z++vT —t—01)] E»E[f(x—l-\/T—t])]:

@U@+¢T—rﬂﬂﬂ—EU@+MT—Hﬂ

<E[|f(x+\/T—t—5I)—f(x+\/T—tI)|]

<E[O- (14 |z + VT — =0 D)5 + |z + VT — £ 1)) x
x]\(\/T—t—(S—\/T—t)IHH]

<C- <\/T—t—5—\/T—t)><
Lo\ 2 1/2
x (E[<1+x+m1)ﬂl+x+\/ﬁ])ﬁ‘> ]) x (E[[{f_{])

<C <\/T—t—5—\/T—t)-\IHQTE>O.

So that w is continuous. It is clear that w,, is continuous too.

(iii) Let ¢ be a test function, such that: wu(t,z) < ¥ (¢, x);
u(to, xo) = ¥ (ty, o) .
Since for every fixed point (¢,x) :  u,(t, ) — u(t,x) then there exists
a sequence of test functions {zpn} , such that:  w,(t,x) < ¥,(t, x);
u(to, To) = Yn(to, To) ;
U (t, x) — W(t, ).
In order to show it we can take zzn =1 + u, —u that satisfies above

written required properties, and in the points where it is not enough smooth
we need to alter it in the proper way to get the test function 1, .
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We know that wu, is a viscosity sub- (and super-) solution to equation ().
So that wu,(T,z) < f(x);

[at¢n + Gln(Da%an)] (to, o) = 0.

Hence u(T,x) < f(x), since u,(t,x) — u(t, z).

n—0

And 2 + G, (D,06) | (to, w0) 2 |01t + Gr(D2,9) | (b0, 0)

n—0
Therefore [ﬁtzb + GI(D?M@D)] (to,x0) = 0.

So, we have that u is a viscosity subsolution to equation (#).
And in the same way we can show that u is a viscosity supersolution.
So, we can conclude that u is a viscosity solution to equation (# ).

3) Now we are going to describe the structure of the covariation set ¥j.

Let us define a set X := conv(X)) in the trace-class topology, where
= {BeC’l(H), B=B">0|VYe>0

1 1
1 5Tr[AB] < Gi(A) < JTH[AB] +¢}.
Therefore Gr(A) = = sup Tr|AB]| = = sup Tr|AB].
Bey, Beyy,
Analogously, G (A) = E sup Tr[AB] _1 sup Tr[AB].
2 Besy, Bey,

Let us show that:
(a) If {B,} = X7 , such that B, —— B then Be .

n—ao

(b) For every B e X} there exists a sequence {B,} < X} ,
such that B, —— B.

n—ao
In fact, let us fix an operator A then:

(a) If {B,} <X} , such that B, —— B then we have:
" n—00
1 1
Letting n — o0 yields 5Tr[AB] < Gi(4) < §Tr[AB] +e.

Hence B e .
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(b) Let there exists B € X7, and a sequence {B,} < X7 converges to the
operator C' # B: B, —— (C € X} . Then we have:

%Tr[AB] < Gi(A) < %Tr[AB] +e;

%Tr[AC] < Gr(A) < %Tr[AC] + €.

Therefore for every A: Tr [AB] =Tr [AC] :
So, it easy to check that B = C', a contradiction.

So, from (a) and (b) we have that

T
> ={B| B, l‘:@’» B, Bye¥)}, where B, = §&,(t)Q®:(t)dt.
n— 0
Hence Y= {B| B, 2“5 B B,ex}.
n—~o0

B(H)QP*(H)dt | Q e 2} |
0

Applying Lm.5.1 we can conclude that X; = {

O N

5.6 The continuity property of stochastic convolution

Define a stochastic convolution as the integral

t
I = f el'=44B, |
0

where A : D(A) — H is the infinitesimal generator of Cj-semigroup (etA) :

~

Theorem 5.8. The integral I; := Se(t_S)Ast 1S continuous for quasi
0
every w if there exists >0, such that

T
f”etAH%g 7 Pdt < o .
0
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Proof.

We shall use the factorization method (see [31]).

For this reason we will use the following elementary inequality:
Let a € (0,1) then

(1ot o dr - Bl —ay = D@LO =)

0 r'(1) sinTa
It follows that
t
T
t—s8)* 1. (s—0) %ds = 15
Je—ort oy ST (15)
0<o<s<t, where s:=r(t—o)+o0,
because
¢ ¢
r— —a a—1 —a
((t—s)*"1 (s—0) dSZS((l—r)(t—a)) ((t— )) dlr(t—o)+o]

= 5(1 —r)elpa(t— )l (t— ) (t— o) dr

1
= {(1—r)* -_O‘dT’:,W .
5 sin T
1
Let o€ (0,4) be fixed, and m > o then we have
a
t
I = sin ma felt=s St—s) 1. (s—0)"“ds dB;.
m 0 o
From the Fubini theorem (Th.5.6) we get that
t
sin ma Set DA (t—5)*7 Y (s)ds quasi surely,
where Y (s Se =4 (s — g)"dB,.

Then by Th.5.7 we have for every s Y(s) ~ Ng(O EIS)

where X7 = { fels=4Qels=4" (s —0)2do, Qe E} :
0
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Therefore 5 y s )
El[ve)h] =7 Y@l do = supTa[e-24 Qb0 (s — o) |do
0 2 0 Qex
= (e, (s — o) do = gs —o =te (s, O)§ = (et dt < 0.
0 2 0 ?
Then by Prop.2.4 it follows E[HY H ] <C,, s€[0,T].

T
Hence E| § [V (s)["ds| < G T, sothat ¥ e L>(0,T;H).
0

Let us consider z(t) = {el=94 (t — s)2~1y(s) ds.

O ey ~+

t—e
Set 2z.(t) := | =94 (¢t — 5)*"ly(s) ds, for a small enough & > 0.
0

So, we have |z(t) — z:(t)| = { e~ (t — s)afly(s) ds

t—e

Hold m (o 7m

o er ineq. < S He AH2m T (t—3)22m 11) d8> ( S Hy HZmdS)
2mea 2m(a—1) M
<MfMLmedﬂ llzamo,m) < Ke - yllzamo,h)
0
K.— 0.
e—0

So that z(-) is continuous if y(-) e L?*™(0,T;H).

And we have that I; is continuous for quasi every w.
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6 Viscosity solution for other parabolic PDEs

6.1 Ornstein-Uhlenbeck process
Consider the following SDE:

dX, = AX,dr +dB, , Te[t,T] < [0,T]
Xt =T .

where X, : [0,T]*Q — H;
B; is a G -Brownian motion in H;
A: D(A) — H is an infinitesimal generator of Cj-semigroup (etA) .

Definition 6.1. A process
X, = Xb® =04 4 J e ™14 B,
t

will be called a mild solution to (S).

Definition 6.2. Stochastic process
t

I = J el"==144B, (16)
0

will be called Ornstein-Uhlenbeck process (or a stochastic convolution as we
have already mentioned above).
Ornstein-Uhlenbeck process is well defined under the condition

t

fcsgug H68AQ1/2H%2(H)dS < 0. (17)
0

Remark 6.1. The condition (17) holds true if sup Tr@Q < co.
QeX

In other words the condition (17) (or the condition of Rem.6.1) implies
that the map s — e(=94 belongs to the HMé (O,t) , what shows us the
following proposition.
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Proposition 6.1. If sup TrQ < oo, ®(s) := =94 then
QeX

®(s) e "ME(0,1) .

Proof.

In order to prove the statement of proposition according to Rem.5.4 we
need to show that [[®|[; < oo.

According to theory of Cj-semigroup it is known that

ete LH), e iy <sM-e® M>1,acR,

t t
Therefore [ [ = E[ sup [#(s)QV2[3, ¢ ds| = Tsup |e=91Q12[2 , ds
0QeX 0Qex
t

t
= [ sup [e1QY73 s < Fsup [Ine 1+ 1@V, |
QeX 0Qex

0

o J/
'

condition(17)

t at 1
<SM-6“S~SupTerS<M-e -sup TrQ) < .
0 Qex a Qe
[]
Proposition 6.2. X% = X35 0<t<s<r<T.
Proof.
X7t_,z _ e(Tﬂf)AQj + Se(Tfo)AdBJ
t
_ 94 DAy | § els=0)A . o(r-9Agp | § AR
t s
_ o(r-9)4 <e(s—t)Ax n S‘e(s—a)AdBU> + {e44B,
t s
_ 6(T—S)A . X;,m + §6(T—J)AdBO_
— xo X
H
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6.2 Solving the fully nonlinear parabolic PDE with
unbounded first order term

Lemma 6.1. Let B; be a G -Brownian motion and A be an infinitesimal
generator of Cy semigroup. A mapping v : R,H — R s twice Fréchet
differentiable by x .

For the small 6 > 0 define the following random variable as:

1 ) )
— 5<Dfm¢(t, o)} e0-)44B,], §e(5‘S)AdBS> .
Then  E[Ls] — E[<Dfmw(t, ) By, B1>] = 2G(D2,y(t, 7)) .

Proof.
Let Ly := <D§x¢(t,x)B1, Bl>.

Note that

E[(AX, V)| < B[ |AX |- [V ] < E[1ALgn - 1X - [V
"B Al (E[1x03]) (B[vIR]) - as)

1
Consider K := —<D§xzp(t, ) §(e®==)4 — dBy, Bs )

and Ms := —<D

OMQ" Ol

)
e0=944B,, §(e®=*4 — I)dB,).
0

Then we have:

] S 1020000 o (B[ §e01-nam ] ) (=122
"2 e ) -0 (B[l — 13,5]) (B[ 184l
R D200, 0 - O §sple @V — Q1) /3D

A
< | DLt )y - C -0 o suplle QY? = QY| 1y - v/G(I) — 0.

D=

99



In much the same Way
b

HMé‘] < H W, SU)HL(H)<E[Hge(é‘s)AstHaD x

( (13-~ D))
Th551HD W(t, I)HLH -C<E[§He A’L2d8]> ( [SH@ =) [H2 ds])
= D200,y (Ssup Q1 3 s) (SS“P e Q5 -Q317,00%5)

0 QieX 0 QX
< |DZ,(t @)|m) - C -6 - max sup e AQF | yqhy - S

<Vl

[N

|=

1
X e, sup %4Q3 — Q3,0 — 0,

G [ )

—%E[@ixw(t,xw&B@]'

Therefore
Rem 4.2

0 < [E[Ls]—E[Lo]| "2

Ol O,
Oy O,

e(é_S)AdBS] ,

Pr0p2 2,2) 1

e(&—s)AdBS] 7 6(5—s)AdBS>

B [( it )|

Ol O,
Ol O,

—(D2,(t, ) By, B5>‘

% (D2 [§e<5—8>AdBS] , § eI, )
—(D2(t,x) [ § 6(5‘3)AdBS] , B5>‘
0
~E [K%W, o)| f el I4dB, |, By ) = (D2,u(t, ) By, B@\]
0

~ B|5sl] + {|Ms]) 0.
[]
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Now let us turn back to equation (P):

w(T,x) = f(x). (F)

u:[0,T] xH—>R;

f € Cp.Lip(H);

G: Kg(H) - R isa G-functional;

A: D(A) — H is a generator of Cy-semigroup (e
B; is a G-Brownian motion with corresponding G -functional G(-),

ie. G(A) = %E[<A3t73t>] ;

{étu+<Aa:,Dxu>+ G(D2u) =0, tel0,T), zeH;

tA) .

T

Xb# = emD4z 4 (e7=9)4dB,  be a mild solution to equation (S):

p
t

(5)

dX, =AX.dr +dB; , Te[t,T] < [0,T]
Xt =T .

Theorem 6.1. Let f is a B-continuous of C, 1ip(H)-class real function.
Then u(t,x) := E[f(X;x)] is a unique viscosity solution to equation (P):

{@u +(Az, Dyu) + G(D2u) =0, tel0,T), xeH; P

w(T,z) = f(x).

Proof.
Let 1 be a test function, and for every fixed point (¢,x) € [0,T]*xH we

have: u < 1;
u(t, ) = ¥(t, z).
Taking a small enough ¢ yields:

Y(t,) = u(t,x) = E[f(X57)] T2 BLF(xp )]

_ E[]E[f(X‘}’y)]me] — E[u(s,Xﬁ’x)] < E[¢(s, X4)].

— s
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Then putting s:=t+9, 6 >0 by the Taylor formula (Lm.4.2) we have:

t+6
(s, XET) = bt + 6, X75) = ¥(t + 6, ez + § elt+=5)4qB.)
5
Rem.5.2 zp(t + 6,7+ (e —x) + Se(5S)AdBS) =U(t,x) + 6 Op(t, o)
0 ’ 1
+ <Dx¢(t, r), ey —x + Se(‘ss)AdBS> +5 6202 (t, )
0
5
+9 - 8t<wa(t, x), e — 2 + Se(5s)Ast>
1 60 0
+5 5<D§w¢(t, ) [e‘mx — x4+ Se<55)Ast] el — o+ Se<55)AdBS>
0 0

5
+0(52 + He‘mx —x+ Se(5_5>AstH2H> .
0
5
We can say that E[0(52 + He‘maj —r+ Se(é_S)AdBSHQHﬂ = 0(52> ,
0

because E[HGM -+ Se )44 B, HH] < ]E[He‘mx — xHa]

+2E[HS@ as, ;|

Th.5.5

< ZHG‘SA:E—xHHnLQSsupHe )AQl/zHiQ dSﬁO

Then we have

0< %(E[w(t + 3, ijg)] ¢(t,x)> < %E[w(t +0,X55) - ¢(t,x)]
0A

_ E[&tw(t,x) + <D$¢(t,x),%> 5<Dz¢ (t, ,ge 3>AdBS>

(o9

(9]

+ % 502 (t, x) + 6 - &t<wa(t, z), L x> + at<szp (t,z), { e 8>Ast>

o
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Ol O,

o[£
5 PR
ol am)
+2i5<pg S)e Ast,Se Man,)

0A

Prop.2.2.5).(a)-(b €T —T 1
p22=5)()()6t¢t:19 +<Dx@/}ta:) T> §5ﬁt?s¢(t733)

Ry S S

%E[@gmt ) {944 B, §e(5S)AdBS>] + 0(5)

0A

S)Aste $—$>
6 ,—5

Ot./joq

+0(9)

Oy O

%@@btm +<x A*D x¢t:13>—|—G( w(t,x)).
Letting § — 0 yields [aﬂb +{x, A*D(t,x)) + G(D%mw)] (t,x) = 0.

Note, that u is continuous at (¢,z) € [0,T]xH.
In fact, let us show that E[f(z + B,)] — E[f(z+ By)|, tel0,T] :

0 < [BLACX)] - BLFOG)| < B[00 — £

5, m LT m 0, , T
< C B[ (1 X+ X1 - IXE — X ]

m\2 0, x T
0’| - E[IXE - X a])

<2C ((HE[X;”’”Uam] +E| X373 ) 'E[X;”’””X%ma]) — 0,

N|—=

0+ Xz

<C- (E[(l + | XL

N

0—0

this convergence is true because:
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T
(2) E[1X57 "] = B[ e 0% + § o403, 3]
t

T
< 2m - <€(Tt)A$|2_|m + E[‘ Se(TS)AdBSam]>
t

Th.5.5 T m
<7 om (e@tmxam +Chy ( §sup e Ql/QHiZ(H)ds> ) <.
t Qex

T
(b) E[HX;-‘F&.’L‘ _ X;xua] _ ]E[HB(T_t)A(e_M:U — )+ § eT=944B,

t+6
T
~ §e@91ap,|3 |
t
t+0
< (Je™04 (e e — ) [} + B[ | | e-1dB |3 |)
t
T2 (-0 (e5a —a) 3+ | § suple™ QUL ds) —0
< e T ey — ) |5 + sup |le"* s] — 0.
H y Qeg Ly(H) 50

Also w(T,z) =E[f(2)] = f(z) < f(z).

So we see that u is a viscosity subsolution to equation (P).
In the same way one can prove that u is a viscosity supersolution, and the
existence is proved.

It is clear that if f is B-continuous and has a polynomial growth that
u is also B-continuous and has a polynomial growth, because a sublinear
expectation £ does not influence on it. So we can conclude that u is a
unique viscosity solution by Th.3.2.

]
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