We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of F-manifold with compatible connection generalizing a structure introduced by Manin

Lorenzoni, P., Pedroni, M., Raimondo, A. (2011). F-manifolds and integrable systems of hydrodynamic type. ARCHIVUM MATHEMATICUM, 47(3), 163-180.

F-manifolds and integrable systems of hydrodynamic type

LORENZONI, PAOLO;RAIMONDO, ANDREA
2011

Abstract

We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of F-manifold with compatible connection generalizing a structure introduced by Manin
Articolo in rivista - Articolo scientifico
F-manifolds, Frobenius manifolds, integrable systems, PDEs of hydrodynamic type.
English
163
180
18
Lorenzoni, P., Pedroni, M., Raimondo, A. (2011). F-manifolds and integrable systems of hydrodynamic type. ARCHIVUM MATHEMATICUM, 47(3), 163-180.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/44690
Citazioni
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
Social impact