The parameters of logit models are typically difficult to interpret, and the applied literature is replete with interpretive and computational mistakes. In this article, I review a menu of options to interpret the results of logistic regressions correctly and effectively using Stata. I consider marginal effects, partial effects, (contrasts of) predictive margins, elasticities, and odds and risk ratios. I also show that interaction terms are typically easier to interpret in practice than implied by the recent literature on this topic.
Uberti, L. (2022). Interpreting logit models. THE STATA JOURNAL, 22(1), 60-76 [10.1177/1536867x221083855].
Interpreting logit models
Uberti, LJ
2022
Abstract
The parameters of logit models are typically difficult to interpret, and the applied literature is replete with interpretive and computational mistakes. In this article, I review a menu of options to interpret the results of logistic regressions correctly and effectively using Stata. I consider marginal effects, partial effects, (contrasts of) predictive margins, elasticities, and odds and risk ratios. I also show that interaction terms are typically easier to interpret in practice than implied by the recent literature on this topic.File | Dimensione | Formato | |
---|---|---|---|
Uberti-2022-The Stata J-VoR.pdf
Solo gestori archivio
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
406.73 kB
Formato
Adobe PDF
|
406.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.