Time-of-Flight (TOF) reconstruction in Positron Emission Tomographic (PET) scanners uses a single kernel to reconstruct all events. However, recently developed detectors combining prompt emission and typical scintillation signal produce output events with different timing spreads. One such detectors technology is based on BGO crystals with Cherenkov photons. Thanks to fast silicon photo-multipliers sensitive in the near-ultraviolet and high-frequency electronic readout, the faint Cherenkov signal produced by the interaction of 511 keV gamma photons can be detected as faster pulse rise times. We present initial results from a Monte Carlo simulation and image reconstruction platform for detectors with multiple timing resolutions in this work. Simulated timing spreads show excellent agreement with the experimental measurements. In addition, the reconstruction software can reconstruct images using listmode and projection data. In terms of contrast recovery, the proposed multi-kernel model with BGO-Cherenkov detectors presents a similar recovery as a typical Gaussian model with LYSO detectors and timing resolution 213 ps. To the best of our knowledge, the use of multiple complex TOF kernels in image reconstruction has not been investigated in the past. However, further optimisations are needed in order to obtain the best possible results.

Efthimiou, N., Kratochwil, N., Gundacker, S., Polesel, A., Salomoni, M., Auffray, E., et al. (2020). Time-of-Flight PET Image Reconstruction with Complex Timing Kernels: The Case of BGO Cherenkov Photons. In 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020 (pp.1-4). Institute of Electrical and Electronics Engineers Inc. [10.1109/NSS/MIC42677.2020.9508046].

Time-of-Flight PET Image Reconstruction with Complex Timing Kernels: The Case of BGO Cherenkov Photons

Salomoni M.;Pizzichemi M.
2020

Abstract

Time-of-Flight (TOF) reconstruction in Positron Emission Tomographic (PET) scanners uses a single kernel to reconstruct all events. However, recently developed detectors combining prompt emission and typical scintillation signal produce output events with different timing spreads. One such detectors technology is based on BGO crystals with Cherenkov photons. Thanks to fast silicon photo-multipliers sensitive in the near-ultraviolet and high-frequency electronic readout, the faint Cherenkov signal produced by the interaction of 511 keV gamma photons can be detected as faster pulse rise times. We present initial results from a Monte Carlo simulation and image reconstruction platform for detectors with multiple timing resolutions in this work. Simulated timing spreads show excellent agreement with the experimental measurements. In addition, the reconstruction software can reconstruct images using listmode and projection data. In terms of contrast recovery, the proposed multi-kernel model with BGO-Cherenkov detectors presents a similar recovery as a typical Gaussian model with LYSO detectors and timing resolution 213 ps. To the best of our knowledge, the use of multiple complex TOF kernels in image reconstruction has not been investigated in the past. However, further optimisations are needed in order to obtain the best possible results.
slide + paper
Time-of-Flight (TOF) reconstruction in Positron Emission Tomographic (PET)
English
2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020 - 31 October 2020 through 7 November 2020
2020
2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020
9781728176932
2020
1
4
none
Efthimiou, N., Kratochwil, N., Gundacker, S., Polesel, A., Salomoni, M., Auffray, E., et al. (2020). Time-of-Flight PET Image Reconstruction with Complex Timing Kernels: The Case of BGO Cherenkov Photons. In 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020 (pp.1-4). Institute of Electrical and Electronics Engineers Inc. [10.1109/NSS/MIC42677.2020.9508046].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/445819
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
Social impact