Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors, which control cell-fate specification of many cell types. Here, we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and, despite their leukemic origin, died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets, we found SOCS3 (suppressor of cytokine signaling-3), a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element, which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6, which demonstrates that SOCS3 is a relevant Sox6 effector

Cantu', C., Ierardi, R., Alborelli, I., Fugazza, C., Cassinelli, L., Piconese, S., et al. (2011). Sox6 enhances erythroid differentiation in human erythroid progenitors. BLOOD, 117(13), 3669-3679 [10.1182/blood-2010-04-282350].

Sox6 enhances erythroid differentiation in human erythroid progenitors

CANTU', CLAUDIO;OTTOLENGHI, SERGIO;RONCHI, ANTONELLA ELLENA
2011

Abstract

Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors, which control cell-fate specification of many cell types. Here, we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and, despite their leukemic origin, died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets, we found SOCS3 (suppressor of cytokine signaling-3), a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element, which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6, which demonstrates that SOCS3 is a relevant Sox6 effector
Articolo in rivista - Articolo scientifico
Cells, Cultured; Erythroid Precursor Cells; Colony-Forming Units Assay; Transfection; Suppressor of Cytokine Signaling Proteins; Erythropoiesis; Cell Growth Processes; Animals; Humans; K562 Cells; Cell Differentiation; Gene Expression Regulation; Mice; Antigens, CD34; Models, Biological; SOXD Transcription Factors
English
2011
117
13
3669
3679
none
Cantu', C., Ierardi, R., Alborelli, I., Fugazza, C., Cassinelli, L., Piconese, S., et al. (2011). Sox6 enhances erythroid differentiation in human erythroid progenitors. BLOOD, 117(13), 3669-3679 [10.1182/blood-2010-04-282350].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/44505
Citazioni
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 52
Social impact