The paper provides a way to model axially symmetric random fields defined over the two-dimensional unit sphere embedded in the three-dimensional Euclidean space. Specifically, our strategy is to integrate an isotropic random field on the sphere over longitudinal arcs with a given central angle. The resulting random field is shown to be axially symmetric and to have the arc central angle as a tuning parameter that allows for isotropy as well as for longitudinal independence as limit cases. We then consider multivariate longitudinally integrated random fields, having the same properties of axial symmetry and a tuning parameter (arc central angle) proper to each random field component. This construction allows for a unified framework for vector-valued random fields that can be geodesically isotropic, axially symmetric, or longitudinally independent. Additionally, all the components of the vector random field are allowed to be cross-correlated. We finally show how to simulate the proposed axially symmetric scalar and vector random fields through a computationally efficient algorithm that exactly reproduces the desired covariance structure and provides approximately Gaussian finite-dimensional distributions.

Emery, X., Porcu, E., Bissiri, P. (2019). A semiparametric class of axially symmetric random fields on the sphere. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 33(10), 1863-1874 [10.1007/s00477-019-01725-8].

A semiparametric class of axially symmetric random fields on the sphere

Bissiri P. G.
2019

Abstract

The paper provides a way to model axially symmetric random fields defined over the two-dimensional unit sphere embedded in the three-dimensional Euclidean space. Specifically, our strategy is to integrate an isotropic random field on the sphere over longitudinal arcs with a given central angle. The resulting random field is shown to be axially symmetric and to have the arc central angle as a tuning parameter that allows for isotropy as well as for longitudinal independence as limit cases. We then consider multivariate longitudinally integrated random fields, having the same properties of axial symmetry and a tuning parameter (arc central angle) proper to each random field component. This construction allows for a unified framework for vector-valued random fields that can be geodesically isotropic, axially symmetric, or longitudinally independent. Additionally, all the components of the vector random field are allowed to be cross-correlated. We finally show how to simulate the proposed axially symmetric scalar and vector random fields through a computationally efficient algorithm that exactly reproduces the desired covariance structure and provides approximately Gaussian finite-dimensional distributions.
Articolo in rivista - Articolo scientifico
Addition theorem; Axial symmetry; Isotropy; Longitudinal independence; Longitudinal integration; Spherical harmonics;
English
2019
33
10
1863
1874
reserved
Emery, X., Porcu, E., Bissiri, P. (2019). A semiparametric class of axially symmetric random fields on the sphere. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 33(10), 1863-1874 [10.1007/s00477-019-01725-8].
File in questo prodotto:
File Dimensione Formato  
Emery-2019-Stochastic Environ Res Risk Assess-VoR.pdf

Solo gestori archivio

Descrizione: Research paper
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/443699
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
Social impact