The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm reproducing conic sections and respecting the convexity properties of the initial data, is here presented. Significant numerical examples are included to illustrate the effectiveness of the proposed method and the smoothness of the limit curves.

Albrecht, G., Romani, L. (2012). Convexity preserving interpolatory subdivision with conic precision. APPLIED MATHEMATICS AND COMPUTATION, 219(8), 4049-4066 [10.1016/j.amc.2012.10.048].

Convexity preserving interpolatory subdivision with conic precision

ROMANI, LUCIA
2012

Abstract

The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm reproducing conic sections and respecting the convexity properties of the initial data, is here presented. Significant numerical examples are included to illustrate the effectiveness of the proposed method and the smoothness of the limit curves.
Articolo in rivista - Articolo scientifico
Subdivision; Interpolation; Convexity preservation; Conic reproduction
English
2012
219
8
4049
4066
open
Albrecht, G., Romani, L. (2012). Convexity preserving interpolatory subdivision with conic precision. APPLIED MATHEMATICS AND COMPUTATION, 219(8), 4049-4066 [10.1016/j.amc.2012.10.048].
File in questo prodotto:
File Dimensione Formato  
AMC_21_09_2012.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 968.19 kB
Formato Adobe PDF
968.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/44276
Citazioni
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
Social impact