Conservation of the energy and the Hamiltonian of a general non linear Schrödinger equation is analyzed for the finite element method “Local Discontinuous Galerkin” spatial discretization. Conservation of the discrete analogue of these quantities is also proved for the fully discrete problem using the modified Crank-Nicolson method as time marching scheme. The theoretical results are validated on a series of problems for different nonlinear potentials.

Castillo, P., Gomez, S. (2018). Conservación de invariantes de la ecuación de Schrödinger no lineal por el método LDG. REVISTA MEXICANA DE FÍSICA E, 64(1), 52-60 [10.31349/RevMexFisE.64.52].

Conservación de invariantes de la ecuación de Schrödinger no lineal por el método LDG

Sergio Gomez
2018

Abstract

Conservation of the energy and the Hamiltonian of a general non linear Schrödinger equation is analyzed for the finite element method “Local Discontinuous Galerkin” spatial discretization. Conservation of the discrete analogue of these quantities is also proved for the fully discrete problem using the modified Crank-Nicolson method as time marching scheme. The theoretical results are validated on a series of problems for different nonlinear potentials.
Articolo in rivista - Articolo scientifico
Energy and Hamiltonian conservation; Local Discontinuous Galerkin method; Modified Crank-Nicolson; Nonlinear Schrödinger equation;
Spanish; Castilian
2018
64
1
52
60
none
Castillo, P., Gomez, S. (2018). Conservación de invariantes de la ecuación de Schrödinger no lineal por el método LDG. REVISTA MEXICANA DE FÍSICA E, 64(1), 52-60 [10.31349/RevMexFisE.64.52].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/442758
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
Social impact