Titanium dioxide nanoparticles (TiO2 NPs) are one of the main sources of the nanoparticulate matter exposure to humans. Although several studies have demonstrated their potential toxic effects, the real nature of the correlation between NP properties and their interaction with biological targets is still far from being fully elucidated. Here, engineered TiO2 NPs with various geometries (bipyramids, plates, and rods) have been prepared, characterized and intravenously administered in healthy mice. Parameters such as biodistribution, accumulation, and toxicity have been assessed in the lungs and liver. Our data show that the organ accumulation of TiO2 NPs, measured by ICP-MS, is quite low, and this is only partially and transiently affected by the NP geometries. The long-lasting permanence is exclusively restricted to the lungs. Here, bipyramids and plates show a higher accumulation, and interestingly, rod-shaped NPs are the most toxic, leading to histopathological pulmonary alterations. In addition, they are also able to induce a transient increase in serum markers related to hepatocellular injury. These results indicate that rods, more than bipyramidal and spherical geometries, lead to a stronger and more severe biological effect. Overall, small physico-chemical differences can dramatically modify both accumulation and safety.

Violatto, M., Sitia, G., Talamini, L., Morelli, A., Tran, N., Zhang, Q., et al. (2023). Variations in Biodistribution and Acute Response of Differently Shaped Titania Nanoparticles in Healthy Rodents. NANOMATERIALS, 13(7) [10.3390/nano13071174].

Variations in Biodistribution and Acute Response of Differently Shaped Titania Nanoparticles in Healthy Rodents

Morelli A.;
2023

Abstract

Titanium dioxide nanoparticles (TiO2 NPs) are one of the main sources of the nanoparticulate matter exposure to humans. Although several studies have demonstrated their potential toxic effects, the real nature of the correlation between NP properties and their interaction with biological targets is still far from being fully elucidated. Here, engineered TiO2 NPs with various geometries (bipyramids, plates, and rods) have been prepared, characterized and intravenously administered in healthy mice. Parameters such as biodistribution, accumulation, and toxicity have been assessed in the lungs and liver. Our data show that the organ accumulation of TiO2 NPs, measured by ICP-MS, is quite low, and this is only partially and transiently affected by the NP geometries. The long-lasting permanence is exclusively restricted to the lungs. Here, bipyramids and plates show a higher accumulation, and interestingly, rod-shaped NPs are the most toxic, leading to histopathological pulmonary alterations. In addition, they are also able to induce a transient increase in serum markers related to hepatocellular injury. These results indicate that rods, more than bipyramidal and spherical geometries, lead to a stronger and more severe biological effect. Overall, small physico-chemical differences can dramatically modify both accumulation and safety.
Articolo in rivista - Articolo scientifico
biodistribution; nanotoxicity; physico-chemical properties; titanium dioxide nanomaterial;
English
25-mar-2023
2023
13
7
1174
none
Violatto, M., Sitia, G., Talamini, L., Morelli, A., Tran, N., Zhang, Q., et al. (2023). Variations in Biodistribution and Acute Response of Differently Shaped Titania Nanoparticles in Healthy Rodents. NANOMATERIALS, 13(7) [10.3390/nano13071174].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/441982
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact