The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.

Lippi, M., Stadiotti, I., Pompilio, G., Sommariva, E. (2020). Human Cell Modeling for Cardiovascular Diseases. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 21(17), 1-27 [10.3390/ijms21176388].

Human Cell Modeling for Cardiovascular Diseases

Lippi, Melania;
2020

Abstract

The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.
Articolo in rivista - Review Essay
Cardiovascular disease; Co-cultures; Disease modeling; Embryonic stem cells; Engineered 3D tissue; Heterologous system; Human cell model; Human induced pluripotent stem cell; Primary cells;
English
2020
21
17
1
27
6388
open
Lippi, M., Stadiotti, I., Pompilio, G., Sommariva, E. (2020). Human Cell Modeling for Cardiovascular Diseases. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 21(17), 1-27 [10.3390/ijms21176388].
File in questo prodotto:
File Dimensione Formato  
Lippi-2020-IJMS-VoR.pdf

accesso aperto

Descrizione: Review
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 960.43 kB
Formato Adobe PDF
960.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/436598
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 13
Social impact