This paper deals with symmetry phenomena for solutions to the Dirichlet problem involving semilinear PDEs on Riemannian domains. We shall present a rather general framework where the symmetry problem can be formulated and provide some evidence that this framework is completely natural by pointing out some results for stable solutions. The case of manifolds with density, and corresponding weighted Laplacians, is inserted in the picture from the very beginning.

Bisterzo, A., Pigola, S. (2023). Symmetry of solutions to semilinear PDEs on Riemannian domains. NONLINEAR ANALYSIS, 234(September 2023) [10.1016/j.na.2023.113320].

Symmetry of solutions to semilinear PDEs on Riemannian domains

Bisterzo A.
;
Pigola S.
2023

Abstract

This paper deals with symmetry phenomena for solutions to the Dirichlet problem involving semilinear PDEs on Riemannian domains. We shall present a rather general framework where the symmetry problem can be formulated and provide some evidence that this framework is completely natural by pointing out some results for stable solutions. The case of manifolds with density, and corresponding weighted Laplacians, is inserted in the picture from the very beginning.
Articolo in rivista - Articolo scientifico
Isoparametric domains; Partial differential equations; Riemannian domains; Stable solutions; Symmetry; Weighted manifolds;
English
2-giu-2023
2023
234
September 2023
113320
open
Bisterzo, A., Pigola, S. (2023). Symmetry of solutions to semilinear PDEs on Riemannian domains. NONLINEAR ANALYSIS, 234(September 2023) [10.1016/j.na.2023.113320].
File in questo prodotto:
File Dimensione Formato  
Bisterzo-2023-Nonlinear Analysis-VoR.pdf

accesso aperto

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 833.03 kB
Formato Adobe PDF
833.03 kB Adobe PDF Visualizza/Apri
Bisterzo-2022-Arxiv-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 365.15 kB
Formato Adobe PDF
365.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/436398
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact