Background: Neuroinflammation is one of the cardinal mechanisms of Alzheimer's disease (AD). with amyloid-β (Aβ) playing a critical role by activating microglia to produce soluble inflammatory mediators, including several chemokines. Peripheral monocytes are, therefore, attracted into the central nervous system (CNS), where they change into blood-born microglia and participate in the attempt of removing toxic Aβ species. The translocator protein-18 kDa (TSPO) is a transmembrane protein overexpressed in response to neuroinflammation and known to regulate human monocyte chemotaxis. Objective: We aimed to evaluate the role of the oligomeric Aβ1-42 isoform at inducing peripheral monocyte chemotaxis, and the possible involvement of TSPO in this process. Methods: In vitro cell lines, and ex vivo monocytes from consecutive AD patients (n = 60), and comparable cognitively intact controls (n = 30) were used. Chemotaxis analyses were carried out through both μ-slide chambers and Boyden assays, using 125 pM oligomeric Aβ1-42 as chemoattractant. TSPO agonists and antagonists were tested (Ro5-4864, Emapunil, PK11195). Results: Oligomeric Aβ directly promoted chemotaxis in all our models. Interestingly, AD monocytes displayed a stronger response (about twofold) with respect to controls. Aβ-induced chemotaxis was prevented by the TSPO antagonist PK11195; the expression of the TSPO and of the C-C chemokine receptor type 2 (CCR2) was unchanged by drug exposure. Conclusion: Oligomeric Aβ1-42 is able to recruit peripheral monocytes, and we provide initial evidence sustaining a role for TSPO in modulating this process. This data may be of value for future therapeutic interventions aimed at modulating monocytes motility toward the CNS.
Conti, E., Grana, D., Angiulli, F., Karantzoulis, A., Villa, C., Combi, R., et al. (2023). TSPO Modulates Oligomeric Amyloid-β-Induced Monocyte Chemotaxis: Relevance for Neuroinflammation in Alzheimer's Disease. JOURNAL OF ALZHEIMER'S DISEASE, 95(2), 549-559 [10.3233/JAD-230239].
TSPO Modulates Oligomeric Amyloid-β-Induced Monocyte Chemotaxis: Relevance for Neuroinflammation in Alzheimer's Disease
Conti, ElisaPrimo
;Grana, Denise;Angiulli, Federica;Karantzoulis, Aristotelis;Villa, Chiara;Combi, Romina;Appollonio, Ildebrando;Ferrarese, Carlo;Aliprandi, AngeloMembro del Collaboration Group
;Andreoni, SimonaMembro del Collaboration Group
;Aprea, VittoriaMembro del Collaboration Group
;Bazzini, ChiaraMembro del Collaboration Group
;Cadamuro, MassimilianoMembro del Collaboration Group
;Bossi, MarioMembro del Collaboration Group
;Da Re, FulvioMembro del Collaboration Group
;Negro, GiuliaMembro del Collaboration Group
;Pozzi, Federico EmanueleMembro del Collaboration Group
;Remoli, GiuliaMembro del Collaboration Group
;Rodriguez Menendez, VirginiaMembro del Collaboration Group
;Sala, GessicaMembro del Collaboration Group
;Salmaggi, AndreaMembro del Collaboration Group
;Zoia, Chiara PaolaMembro del Collaboration Group
;Tremolizzo, Lucio
2023
Abstract
Background: Neuroinflammation is one of the cardinal mechanisms of Alzheimer's disease (AD). with amyloid-β (Aβ) playing a critical role by activating microglia to produce soluble inflammatory mediators, including several chemokines. Peripheral monocytes are, therefore, attracted into the central nervous system (CNS), where they change into blood-born microglia and participate in the attempt of removing toxic Aβ species. The translocator protein-18 kDa (TSPO) is a transmembrane protein overexpressed in response to neuroinflammation and known to regulate human monocyte chemotaxis. Objective: We aimed to evaluate the role of the oligomeric Aβ1-42 isoform at inducing peripheral monocyte chemotaxis, and the possible involvement of TSPO in this process. Methods: In vitro cell lines, and ex vivo monocytes from consecutive AD patients (n = 60), and comparable cognitively intact controls (n = 30) were used. Chemotaxis analyses were carried out through both μ-slide chambers and Boyden assays, using 125 pM oligomeric Aβ1-42 as chemoattractant. TSPO agonists and antagonists were tested (Ro5-4864, Emapunil, PK11195). Results: Oligomeric Aβ directly promoted chemotaxis in all our models. Interestingly, AD monocytes displayed a stronger response (about twofold) with respect to controls. Aβ-induced chemotaxis was prevented by the TSPO antagonist PK11195; the expression of the TSPO and of the C-C chemokine receptor type 2 (CCR2) was unchanged by drug exposure. Conclusion: Oligomeric Aβ1-42 is able to recruit peripheral monocytes, and we provide initial evidence sustaining a role for TSPO in modulating this process. This data may be of value for future therapeutic interventions aimed at modulating monocytes motility toward the CNS.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.