Silicene or the two-dimensional (2D) graphene-like silicon allotrope has recently emerged as a promising candidate for various applications in nanotechnology. However, concerns on the silicene stability still persist to date and need to be addressed aiming at the fabrication of competing and durable silicene-based devices. Here, we present an all-around encapsulation methodology beyond the current state-of-the-art silicene configuration, namely silicene sandwiched in between a capping layer (e.g., Al2O3) and the supporting substrate (e.g., Ag). In this framework, the insertion of one or two sacrificial 2D Sn layers enables the realization of different atomically thin encapsulation schemes, preserving the pristine properties of silicene while decoupling it from the growth template. On one hand, the epitaxy of a 2D Sn layer before silicene allows for the removal of the Ag substrate with no effect on silicene which in turn can be easily gated, for example, with an oxide layer on its top face. On the other hand, a full 2D encapsulation scheme, where top and bottom faces of silicene are protected by 2D Sn layers, gives rise to an atomically thin and cm2-scaled membrane preventing degradation of silicene for months. Both schemes thus constitute an advancement for the silicene stability and encapsulation in ambient conditions, paving the way to further exploitation in flexible electronics and photonics.

Dhungana, D., Massetti, C., Martella, C., Grazianetti, C., Molle, A. (2023). All-around encapsulation of silicene. NANOSCALE HORIZONS, 8(10), 1428-1434 [10.1039/d3nh00309d].

All-around encapsulation of silicene

Massetti, Chiara
Co-primo
;
2023

Abstract

Silicene or the two-dimensional (2D) graphene-like silicon allotrope has recently emerged as a promising candidate for various applications in nanotechnology. However, concerns on the silicene stability still persist to date and need to be addressed aiming at the fabrication of competing and durable silicene-based devices. Here, we present an all-around encapsulation methodology beyond the current state-of-the-art silicene configuration, namely silicene sandwiched in between a capping layer (e.g., Al2O3) and the supporting substrate (e.g., Ag). In this framework, the insertion of one or two sacrificial 2D Sn layers enables the realization of different atomically thin encapsulation schemes, preserving the pristine properties of silicene while decoupling it from the growth template. On one hand, the epitaxy of a 2D Sn layer before silicene allows for the removal of the Ag substrate with no effect on silicene which in turn can be easily gated, for example, with an oxide layer on its top face. On the other hand, a full 2D encapsulation scheme, where top and bottom faces of silicene are protected by 2D Sn layers, gives rise to an atomically thin and cm2-scaled membrane preventing degradation of silicene for months. Both schemes thus constitute an advancement for the silicene stability and encapsulation in ambient conditions, paving the way to further exploitation in flexible electronics and photonics.
Articolo in rivista - Articolo scientifico
Xenes, silicene
English
15-ago-2023
2023
8
10
1428
1434
none
Dhungana, D., Massetti, C., Martella, C., Grazianetti, C., Molle, A. (2023). All-around encapsulation of silicene. NANOSCALE HORIZONS, 8(10), 1428-1434 [10.1039/d3nh00309d].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/435725
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact