Early identification of children on the autism spectrum is crucial for early intervention with long-term positive effects on symptoms and skills. The need for improved objective autism detection tools is emphasized by the poor diagnostic power in current tools. Here, we aim to evaluate the classification performance of acoustic features of the voice in children with autism spectrum disorder (ASD) with respect to a heterogeneous control group (composed of neurotypical children, children with Developmental Language Disorder [DLD] and children with sensorineural hearing loss with Cochlear Implant [CI]). This retrospective diagnostic study was conducted at the Child Psychiatry Unit of Tours University Hospital (France). A total of 108 children, including 38 diagnosed with ASD (8.5 ± 0.25 years), 24 typically developing (TD; 8.2 ± 0.32 years) and 46 children with atypical development (DLD and CI; 7.9 ± 0.36 years) were enrolled in our studies. The acoustic properties of speech samples produced by children in the context of a nonword repetition task were measured. We used a Monte Carlo cross-validation with an ROC (Receiving Operator Characteristic) supervised k-Means clustering algorithm to develop a classification model that can differentially classify a child with an unknown disorder. We showed that voice acoustics classified autism diagnosis with an overall accuracy of 91% [CI95%, 90.40%-91.65%] against TD children, and of 85% [CI95%, 84.5%–86.6%] against an heterogenous group of non-autistic children. Accuracy reported here with multivariate analysis combined with Monte Carlo cross-validation is higher than in previous studies. Our findings demonstrate that easy-to-measure voice acoustic parameters could be used as a diagnostic aid tool, specific to ASD.

Briend, F., David, C., Silleresi, S., Malvy, J., Ferré, S., Latinus, M. (2023). Voice acoustics allow classifying autism spectrum disorder with high accuracy. TRANSLATIONAL PSYCHIATRY, 13(1) [10.1038/s41398-023-02554-8].

Voice acoustics allow classifying autism spectrum disorder with high accuracy

Silleresi, Silvia;
2023

Abstract

Early identification of children on the autism spectrum is crucial for early intervention with long-term positive effects on symptoms and skills. The need for improved objective autism detection tools is emphasized by the poor diagnostic power in current tools. Here, we aim to evaluate the classification performance of acoustic features of the voice in children with autism spectrum disorder (ASD) with respect to a heterogeneous control group (composed of neurotypical children, children with Developmental Language Disorder [DLD] and children with sensorineural hearing loss with Cochlear Implant [CI]). This retrospective diagnostic study was conducted at the Child Psychiatry Unit of Tours University Hospital (France). A total of 108 children, including 38 diagnosed with ASD (8.5 ± 0.25 years), 24 typically developing (TD; 8.2 ± 0.32 years) and 46 children with atypical development (DLD and CI; 7.9 ± 0.36 years) were enrolled in our studies. The acoustic properties of speech samples produced by children in the context of a nonword repetition task were measured. We used a Monte Carlo cross-validation with an ROC (Receiving Operator Characteristic) supervised k-Means clustering algorithm to develop a classification model that can differentially classify a child with an unknown disorder. We showed that voice acoustics classified autism diagnosis with an overall accuracy of 91% [CI95%, 90.40%-91.65%] against TD children, and of 85% [CI95%, 84.5%–86.6%] against an heterogenous group of non-autistic children. Accuracy reported here with multivariate analysis combined with Monte Carlo cross-validation is higher than in previous studies. Our findings demonstrate that easy-to-measure voice acoustic parameters could be used as a diagnostic aid tool, specific to ASD.
Articolo in rivista - Articolo scientifico
Autism, DLD, Cochlear Implant, Voice, Acoustics
English
8-lug-2023
2023
13
1
250
open
Briend, F., David, C., Silleresi, S., Malvy, J., Ferré, S., Latinus, M. (2023). Voice acoustics allow classifying autism spectrum disorder with high accuracy. TRANSLATIONAL PSYCHIATRY, 13(1) [10.1038/s41398-023-02554-8].
File in questo prodotto:
File Dimensione Formato  
Briend-2023-Translat Psych-AAM.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 241.04 kB
Formato Adobe PDF
241.04 kB Adobe PDF Visualizza/Apri
Briend-2023-Translat Psych-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/429860
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact