We obtain a maximum principle, and "a priori" upper estimates for solutions of a class of non-linear singular elliptic differential inequalities on Riemannian manifolds under the sole geometrical assumption of volume growth conditions. Various applications of the results obtained are presented.
Pigola, S., M., R., Setti, A. (2003). Volume growth, "a priori" estimates, and geometric applications. GEOMETRIC AND FUNCTIONAL ANALYSIS, 13(6), 1302-1328 [10.1007/s00039-003-0447-2].
Volume growth, "a priori" estimates, and geometric applications
S. PIGOLA
;
2003
Abstract
We obtain a maximum principle, and "a priori" upper estimates for solutions of a class of non-linear singular elliptic differential inequalities on Riemannian manifolds under the sole geometrical assumption of volume growth conditions. Various applications of the results obtained are presented.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Pigola-2003-Geom Funct Anal-VoR.pdf
Solo gestori archivio
Descrizione: Original Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
286.56 kB
Formato
Adobe PDF
|
286.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.