We obtain a maximum principle, and "a priori" upper estimates for solutions of a class of non-linear singular elliptic differential inequalities on Riemannian manifolds under the sole geometrical assumption of volume growth conditions. Various applications of the results obtained are presented.

Pigola, S., M., R., Setti, A. (2003). Volume growth, "a priori" estimates, and geometric applications. GEOMETRIC AND FUNCTIONAL ANALYSIS, 13(6), 1302-1328 [10.1007/s00039-003-0447-2].

Volume growth, "a priori" estimates, and geometric applications

S. PIGOLA
;
2003

Abstract

We obtain a maximum principle, and "a priori" upper estimates for solutions of a class of non-linear singular elliptic differential inequalities on Riemannian manifolds under the sole geometrical assumption of volume growth conditions. Various applications of the results obtained are presented.
Articolo in rivista - Articolo scientifico
Non-linear elliptic inequalities, a-priopri estimates, volume growth, Riemannian manifolds
English
2003
13
6
1302
1328
reserved
Pigola, S., M., R., Setti, A. (2003). Volume growth, "a priori" estimates, and geometric applications. GEOMETRIC AND FUNCTIONAL ANALYSIS, 13(6), 1302-1328 [10.1007/s00039-003-0447-2].
File in questo prodotto:
File Dimensione Formato  
Pigola-2003-Geom Funct Anal-VoR.pdf

Solo gestori archivio

Descrizione: Original Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 286.56 kB
Formato Adobe PDF
286.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/424513
Citazioni
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
Social impact