The promising chemical, mechanical, and electrical properties of silver from nano scale to bulk level make it useful to be used in a variety of applications in the biomedical and electronic fields. Recently, several methods have been proposed and applied for the small-scale and mass production of silver in the form of nanoparticles, nanowires, and nanofibers. In this research, we have proposed a novel method for the fabrication of silver nano fibers (AgNFs) that is environmentally friendly and can be easily deployed for large-scale production. Moreover, the proposed technique is easy for device fabrication in different applications. To validate the properties, the synthesized silver nanofibers have been examined through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Further, the synthesized silver nanofibers have been deposited over sensors for Relative humidity (RH), Ammonia (NH3 ), and temperature sensing applications. The sensor was of a resistive type, and found 4.3 kΩ for relative humidity (RH %) 30–90%, 400 kΩ for NH3 (40,000 ppm), and 5 MΩ for temperature sensing (69◦C). The durability and speed of the sensor verified through repetitive, response, and recovery tests of the sensor in a humidity and gas chamber. It was observed that the sensor took 13 s to respond, 27 s to measure the maximum value, and took 33 s to regain its minimum value. Furthermore, it was observed that at lower frequencies and higher concentration of NH3, the response of the device was excellent. Furthermore, the device has linear and repetitive responses, is cost-effective, and is easy to fabricate.

Rashid, H., Ali, M., Sarker, M., Hamid Md Ali, S., Akhtar, N., Ali Khan, N., et al. (2021). Synthesis, Characterization, and Applications of Silver Nano Fibers in Humidity, Ammonia, and Temperature Sensing. MICROMACHINES, 12(6), 1-12 [10.3390/mi12060682].

Synthesis, Characterization, and Applications of Silver Nano Fibers in Humidity, Ammonia, and Temperature Sensing

Sahar Shah
2021

Abstract

The promising chemical, mechanical, and electrical properties of silver from nano scale to bulk level make it useful to be used in a variety of applications in the biomedical and electronic fields. Recently, several methods have been proposed and applied for the small-scale and mass production of silver in the form of nanoparticles, nanowires, and nanofibers. In this research, we have proposed a novel method for the fabrication of silver nano fibers (AgNFs) that is environmentally friendly and can be easily deployed for large-scale production. Moreover, the proposed technique is easy for device fabrication in different applications. To validate the properties, the synthesized silver nanofibers have been examined through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Further, the synthesized silver nanofibers have been deposited over sensors for Relative humidity (RH), Ammonia (NH3 ), and temperature sensing applications. The sensor was of a resistive type, and found 4.3 kΩ for relative humidity (RH %) 30–90%, 400 kΩ for NH3 (40,000 ppm), and 5 MΩ for temperature sensing (69◦C). The durability and speed of the sensor verified through repetitive, response, and recovery tests of the sensor in a humidity and gas chamber. It was observed that the sensor took 13 s to respond, 27 s to measure the maximum value, and took 33 s to regain its minimum value. Furthermore, it was observed that at lower frequencies and higher concentration of NH3, the response of the device was excellent. Furthermore, the device has linear and repetitive responses, is cost-effective, and is easy to fabricate.
Articolo in rivista - Articolo scientifico
Ammonia; Humidity; Nanofibers; Silver nanoparticles; Temperature sensor;
English
2021
12
6
1
12
682
open
Rashid, H., Ali, M., Sarker, M., Hamid Md Ali, S., Akhtar, N., Ali Khan, N., et al. (2021). Synthesis, Characterization, and Applications of Silver Nano Fibers in Humidity, Ammonia, and Temperature Sensing. MICROMACHINES, 12(6), 1-12 [10.3390/mi12060682].
File in questo prodotto:
File Dimensione Formato  
Shah-2021-Micromachines-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/423123
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact