The biological-tuning of the Action Observation Network is highly debated. A current open question relates to whether the morphological appearance (body shape) and/or the biological motion of the observed agent triggers action simulation processes. Motor simulation of the partner's action is critical for motor interactions, where two partners coordinate their actions in space and time. It supports interpersonal alignment and facilitates online coordination. However, motor simulation also leads to visuo-motor interference effects when people are required to coordinate with complementary actions, i.e. incongruent movements as compared to the observed ones. Movement kinematics of interactive partners allows us to capture their automatic tendency to simulate and imitate the partner's complementary movements. In an online reach-to-grasp task, we investigated whether visuo-motor interference effects, visible in the kinematics of complementary movements, are modulated by the visual presence of the interactor's body shape. We asked participants to interact with 1) a humanoid agent with a human-like body shape and with real human, biological, movement kinematics, or 2) a non-humanoid agent, which did not resemble the human body-shape but moved with the same real kinematics. Through the combination of inferential and Bayesian statistics, the results show no effect of interactor's body shape on visuo-motor interference in reaching and grasping kinematics during online motor coordination. We discuss the results and propose that the kinematics of the observed movements, during motor interactions, might be the key factor for visuo-motor interference to take place independently from the morphological appearance of the partner. This is particularly relevant in a technological society that constantly asks humans to interact with artificial agents.
Gandolfo, M., Era, V., Tieri, G., Sacheli, L., Candidi, M. (2019). Interactor's body shape does not affect visuo-motor interference effects during motor coordination. ACTA PSYCHOLOGICA, 196, 42-50 [10.1016/j.actpsy.2019.04.003].
Interactor's body shape does not affect visuo-motor interference effects during motor coordination
Sacheli L. M.;
2019
Abstract
The biological-tuning of the Action Observation Network is highly debated. A current open question relates to whether the morphological appearance (body shape) and/or the biological motion of the observed agent triggers action simulation processes. Motor simulation of the partner's action is critical for motor interactions, where two partners coordinate their actions in space and time. It supports interpersonal alignment and facilitates online coordination. However, motor simulation also leads to visuo-motor interference effects when people are required to coordinate with complementary actions, i.e. incongruent movements as compared to the observed ones. Movement kinematics of interactive partners allows us to capture their automatic tendency to simulate and imitate the partner's complementary movements. In an online reach-to-grasp task, we investigated whether visuo-motor interference effects, visible in the kinematics of complementary movements, are modulated by the visual presence of the interactor's body shape. We asked participants to interact with 1) a humanoid agent with a human-like body shape and with real human, biological, movement kinematics, or 2) a non-humanoid agent, which did not resemble the human body-shape but moved with the same real kinematics. Through the combination of inferential and Bayesian statistics, the results show no effect of interactor's body shape on visuo-motor interference in reaching and grasping kinematics during online motor coordination. We discuss the results and propose that the kinematics of the observed movements, during motor interactions, might be the key factor for visuo-motor interference to take place independently from the morphological appearance of the partner. This is particularly relevant in a technological society that constantly asks humans to interact with artificial agents.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.