Blood pressure (BP) is characterized by marked short-term fluctuations occurring within a 24 h period (beat-to-beat, minute-to-minute, hour-to-hour, and day-to-night changes) and also by long-term fluctuations occurring over more-prolonged periods of time (days, weeks, months, seasons, and even years). Rather than representing ‘background noise’ or a randomly occurring phenomenon, these variations have been shown to be the result of complex interactions between extrinsic environmental and behavioural factors and intrinsic cardiovascular regulatory mechanisms. Although the adverse cardiovascular consequences of hypertension largely depend on absolute BP values, evidence from observational studies and post-hoc analyses of data from clinical trials have indicated that these outcomes might also depend on increased BP variability (BPV). Increased short-term and long-term BPV are associated with the development, progression, and severity of cardiac, vascular, and renal damage and with an increased risk of cardiovascular events and mortality. Of particular interest are the findings from post-hoc analyses of large intervention trials in hypertension, showing that within-patient visit-to-visit BPV is strongly prognostic for cardiovascular morbidity and mortality. This result has prompted discussion on whether antihypertensive treatment should be targeted not only towards reducing mean BP levels but also to stabilizing BPV with the aim of achieving consistent BP control over time, which might favour cardiovascular protection.
Parati, G., OCHOA MUNERA, J., Lombardi, C., Bilo, G. (2013). Assessment and management of blood pressure variability. NATURE REVIEWS. CARDIOLOGY, 10, 143-155 [10.1038/nrcardio.2013.1].
Assessment and management of blood pressure variability.
PARATI, GIANFRANCO;OCHOA MUNERA, JUAN EUGENIO;LOMBARDI, CAROLINA;BILO, GRZEGORZ
2013
Abstract
Blood pressure (BP) is characterized by marked short-term fluctuations occurring within a 24 h period (beat-to-beat, minute-to-minute, hour-to-hour, and day-to-night changes) and also by long-term fluctuations occurring over more-prolonged periods of time (days, weeks, months, seasons, and even years). Rather than representing ‘background noise’ or a randomly occurring phenomenon, these variations have been shown to be the result of complex interactions between extrinsic environmental and behavioural factors and intrinsic cardiovascular regulatory mechanisms. Although the adverse cardiovascular consequences of hypertension largely depend on absolute BP values, evidence from observational studies and post-hoc analyses of data from clinical trials have indicated that these outcomes might also depend on increased BP variability (BPV). Increased short-term and long-term BPV are associated with the development, progression, and severity of cardiac, vascular, and renal damage and with an increased risk of cardiovascular events and mortality. Of particular interest are the findings from post-hoc analyses of large intervention trials in hypertension, showing that within-patient visit-to-visit BPV is strongly prognostic for cardiovascular morbidity and mortality. This result has prompted discussion on whether antihypertensive treatment should be targeted not only towards reducing mean BP levels but also to stabilizing BPV with the aim of achieving consistent BP control over time, which might favour cardiovascular protection.File | Dimensione | Formato | |
---|---|---|---|
Assessment-Nature Reviews Cardiology 2013.pdf
Solo gestori archivio
Dimensione
380.2 kB
Formato
Adobe PDF
|
380.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.