Let M be an 8-dimensional nilmanifold. We give a classification of the left-invariant complex structures J on M for which every invariant compatible metric g is strong Kähler with torsion. The family of such complex structures on 8-dimensional nilmanifolds turns out to be the same as that one of complex structures such that every invariant compatible metric g is astheno-Kähler.

Rossi, F., Tomassini, A. (2012). On strong Kähler and astheno-Kähler metrics on nilmanifolds. ADVANCES IN GEOMETRY, 12(3), 431-446 [10.1515/advgeom-2011-057].

On strong Kähler and astheno-Kähler metrics on nilmanifolds

ROSSI, FEDERICO ALBERTO;
2012

Abstract

Let M be an 8-dimensional nilmanifold. We give a classification of the left-invariant complex structures J on M for which every invariant compatible metric g is strong Kähler with torsion. The family of such complex structures on 8-dimensional nilmanifolds turns out to be the same as that one of complex structures such that every invariant compatible metric g is astheno-Kähler.
Articolo in rivista - Articolo scientifico
Strong Kähler with torsion metric, astheno-Kähler metric, nilmanifold.
English
2012
12
3
431
446
none
Rossi, F., Tomassini, A. (2012). On strong Kähler and astheno-Kähler metrics on nilmanifolds. ADVANCES IN GEOMETRY, 12(3), 431-446 [10.1515/advgeom-2011-057].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/41993
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
Social impact