We analyze data collected as an observational study by Sacco Hospital patients diagnosed with COVID-19 from the start of the pandemic in early 2020 through December 2022. The list of long-term COVID-19 symptoms includes, among others, fatigue, breathing trouble, rapid heart rhythms, difficulty thinking or concentrating. We analyzed the joint association of the symptoms with the chance of recovering and the effects of covariates through the hidden Markov model for multivariate continuous longitudinal responses that accounts for partially missing outcomes at a given time occasion and dropout.

Pennoni, F., Bartolucci, F., Spinelli, D., Vittadini, G. (2023). Analysis of Sacco Hospital longitudinal data by hidden Markov models. Intervento presentato a: Workshop intermedio Progetto: Analisi causale delle determinanti dello stato di salute dei pazienti affetti da “long-Covid” sulla base di dati clinici, funzionali e strumentali: uno studio longitudinale multicentro, Dipartimento di Economia Perugia.

Analysis of Sacco Hospital longitudinal data by hidden Markov models

Pennoni, F;Spinelli, D;Vittadini, G
2023

Abstract

We analyze data collected as an observational study by Sacco Hospital patients diagnosed with COVID-19 from the start of the pandemic in early 2020 through December 2022. The list of long-term COVID-19 symptoms includes, among others, fatigue, breathing trouble, rapid heart rhythms, difficulty thinking or concentrating. We analyzed the joint association of the symptoms with the chance of recovering and the effects of covariates through the hidden Markov model for multivariate continuous longitudinal responses that accounts for partially missing outcomes at a given time occasion and dropout.
abstract + slide
Chronic trend of long-Covid-19 specific symptoms; Heterogeneous subgroups; Expectation-Maximization algorithm; Missing at random; Dynamic clustering
English
Workshop intermedio Progetto: Analisi causale delle determinanti dello stato di salute dei pazienti affetti da “long-Covid” sulla base di dati clinici, funzionali e strumentali: uno studio longitudinale multicentro
2023
2023
none
Pennoni, F., Bartolucci, F., Spinelli, D., Vittadini, G. (2023). Analysis of Sacco Hospital longitudinal data by hidden Markov models. Intervento presentato a: Workshop intermedio Progetto: Analisi causale delle determinanti dello stato di salute dei pazienti affetti da “long-Covid” sulla base di dati clinici, funzionali e strumentali: uno studio longitudinale multicentro, Dipartimento di Economia Perugia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/419181
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact