In this chapter we prove a variety of results about finite groups of Lie type that will be used in our proof of Cherlin’s conjecture in later chapters. These results concern automorphisms, centralizers, alternating sections, and, most substantially, proofs that various special actions are non-binary.
Gill, N., Liebeck, M., Spiga, P. (2022). Preliminary Results for Groups of Lie Type. In N. Gill, M.W. Liebeck, P. Spiga (a cura di), Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups (pp. 37-69). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-030-95956-2_2].
Preliminary Results for Groups of Lie Type
Spiga P.
2022
Abstract
In this chapter we prove a variety of results about finite groups of Lie type that will be used in our proof of Cherlin’s conjecture in later chapters. These results concern automorphisms, centralizers, alternating sections, and, most substantially, proofs that various special actions are non-binary.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Gill-2022-Lect Notes Math-preprint.pdf
accesso aperto
Descrizione: Contributo in libro
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.