Holes BA1B and BA3A were drilled into the Wadi Tayin Massif, southern ophiolite complex of Oman, a fragment of the Tethyan oceanic lithosphere obducted onto the Arabian continent. Within the sequence, we have studied a portion of the shallow mantle, composed mainly of strongly serpentinised harzburgite that embeds dunitic levels, the biggest being over 150 m thick. The formation of thick dunitic channels, already approached via published structural and mathematical models, is here investigated with a mineral chemistry approach. We focused on Cr-spinel, the only widespread phase preserved during serpentinization, whose TiO2 content displays a wide variability from low in harzburgite, (TiO2 < 0.25 wt. %), typical of non-metasomatised ophiolite mantle, to moderately high in dunite (TiO2 < 1.10 wt. %) characterizing a rock/melt interactions. The high variability of TiO2, accompanied by similar patterns of Cr# and Mg# is observed, in a fractal pattern, at all scales of investigation, from the whole channel scale to the single thin section, where it affects even single grain zonings. Our results suggest that the over 150 m thick dunite channel here investigated was formed by coalescence of different scale melt channels and reaction zones with different sizes, confirming the published structural model.
Cocomazzi, G., Grieco, G., Tartarotti, P., Bussolesi, M., Zaccarini, F., Crispini, L. (2020). The Formation of Dunite Channels within Harzburgite in the Wadi Tayin Massif, Oman Ophiolite: Insights from Compositional Variability of Cr-Spinel and Olivine in Holes BA1B and BA3A, Oman Drilling Project. MINERALS, 10(2) [10.3390/min10020167].
The Formation of Dunite Channels within Harzburgite in the Wadi Tayin Massif, Oman Ophiolite: Insights from Compositional Variability of Cr-Spinel and Olivine in Holes BA1B and BA3A, Oman Drilling Project
Bussolesi, M;
2020
Abstract
Holes BA1B and BA3A were drilled into the Wadi Tayin Massif, southern ophiolite complex of Oman, a fragment of the Tethyan oceanic lithosphere obducted onto the Arabian continent. Within the sequence, we have studied a portion of the shallow mantle, composed mainly of strongly serpentinised harzburgite that embeds dunitic levels, the biggest being over 150 m thick. The formation of thick dunitic channels, already approached via published structural and mathematical models, is here investigated with a mineral chemistry approach. We focused on Cr-spinel, the only widespread phase preserved during serpentinization, whose TiO2 content displays a wide variability from low in harzburgite, (TiO2 < 0.25 wt. %), typical of non-metasomatised ophiolite mantle, to moderately high in dunite (TiO2 < 1.10 wt. %) characterizing a rock/melt interactions. The high variability of TiO2, accompanied by similar patterns of Cr# and Mg# is observed, in a fractal pattern, at all scales of investigation, from the whole channel scale to the single thin section, where it affects even single grain zonings. Our results suggest that the over 150 m thick dunite channel here investigated was formed by coalescence of different scale melt channels and reaction zones with different sizes, confirming the published structural model.File | Dimensione | Formato | |
---|---|---|---|
Cocomazzi-2020-Minerals-VoR.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
4.8 MB
Formato
Adobe PDF
|
4.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.