In this study, ocean and atmosphere satellite observations, an atmospheric reanalysis and a set of regional numerical simulations of the lower atmosphere are used to assess the coupling between the sea-surface temperature (SST) and the marine atmospheric boundary layer (MABL) as well as the latent heat flux (LHF) sensitivity to SST in the north-west tropical Atlantic Ocean. The results suggest that the SST-MABL coupling depends on the spatial scale of interest. At scales larger than the ocean mesoscale (larger than 150 km), negative correlations are observed between near-surface wind speed (U-1 (0m)) and SST and positive correlations between near-surface specific humidity (q(2m)) and SST. However, when smaller scales (1 - 150 km, i.e., encompassing the ocean mesoscale and a portion of the submesoscale) are considered, U-10 (m)-SST correlate inversely and the q(2m)-SST relation significantly differs from what is expected using the Clausius-Clapeyron equation. This is interpreted in terms of an active ocean modifying the near-surface atmospheric state, driving convection, mixing and entrainment of air from the free troposphere into the MABL. The estimated values of the ocean-atmosphere coupling at the ocean small-scale are then used to develop a linear and SST-based downscaling method aiming to include and further investigate the impact of these fine-scale SST features into an available low-resolution latent heat flux (LHF) data set. The results show that they induce a significant increase of LHF (30% to 40% per degrees C of SST). We identify two mechanisms causing such a large increase of LHF: (1) the thermodynamic contribution that only includes the increase in LHF with larger SSTs associated with the Clausius-Clapeyron dependence of saturating water vapor pressure on SST and (2) the dynamical contribution related to the change in vertical stratification of the MABL as a consequence of SST anomalies. Using different downscaling setups, we conclude that largest contribution comes from the dynamic mode (28% against 5% for the thermodynamic mode). To validate our approach and results, we have implemented a set of high-resolution WRF numerical simulations forced by high-resolution satellite SST that we have analyzed in terms of LHF using the same algorithm. The LHF estimate biases are reduced by a factor of 2 when the downscaling is applied, providing confidence in our results.

Fernandez, P., Speich, S., Borgnino, M., Meroni, A., Desbiolles, F., Pasquero, C. (2023). On the importance of the atmospheric coupling to the small-scale ocean in the modulation of latent heat flux. FRONTIERS IN MARINE SCIENCE, 10 [10.3389/fmars.2023.1136558].

On the importance of the atmospheric coupling to the small-scale ocean in the modulation of latent heat flux

Borgnino, M;Meroni, AN;Desbiolles, F;Pasquero, C
2023

Abstract

In this study, ocean and atmosphere satellite observations, an atmospheric reanalysis and a set of regional numerical simulations of the lower atmosphere are used to assess the coupling between the sea-surface temperature (SST) and the marine atmospheric boundary layer (MABL) as well as the latent heat flux (LHF) sensitivity to SST in the north-west tropical Atlantic Ocean. The results suggest that the SST-MABL coupling depends on the spatial scale of interest. At scales larger than the ocean mesoscale (larger than 150 km), negative correlations are observed between near-surface wind speed (U-1 (0m)) and SST and positive correlations between near-surface specific humidity (q(2m)) and SST. However, when smaller scales (1 - 150 km, i.e., encompassing the ocean mesoscale and a portion of the submesoscale) are considered, U-10 (m)-SST correlate inversely and the q(2m)-SST relation significantly differs from what is expected using the Clausius-Clapeyron equation. This is interpreted in terms of an active ocean modifying the near-surface atmospheric state, driving convection, mixing and entrainment of air from the free troposphere into the MABL. The estimated values of the ocean-atmosphere coupling at the ocean small-scale are then used to develop a linear and SST-based downscaling method aiming to include and further investigate the impact of these fine-scale SST features into an available low-resolution latent heat flux (LHF) data set. The results show that they induce a significant increase of LHF (30% to 40% per degrees C of SST). We identify two mechanisms causing such a large increase of LHF: (1) the thermodynamic contribution that only includes the increase in LHF with larger SSTs associated with the Clausius-Clapeyron dependence of saturating water vapor pressure on SST and (2) the dynamical contribution related to the change in vertical stratification of the MABL as a consequence of SST anomalies. Using different downscaling setups, we conclude that largest contribution comes from the dynamic mode (28% against 5% for the thermodynamic mode). To validate our approach and results, we have implemented a set of high-resolution WRF numerical simulations forced by high-resolution satellite SST that we have analyzed in terms of LHF using the same algorithm. The LHF estimate biases are reduced by a factor of 2 when the downscaling is applied, providing confidence in our results.
Articolo in rivista - Articolo scientifico
Air-sea interactions; coupling coefficients; latent heat flux downscaling; latent heat flux sensitivity to SST; marine atmospheric boundary layer; north-west tropical Atlantic; ocean fine-scale;
English
2023
10
1136558
open
Fernandez, P., Speich, S., Borgnino, M., Meroni, A., Desbiolles, F., Pasquero, C. (2023). On the importance of the atmospheric coupling to the small-scale ocean in the modulation of latent heat flux. FRONTIERS IN MARINE SCIENCE, 10 [10.3389/fmars.2023.1136558].
File in questo prodotto:
File Dimensione Formato  
Fernandez-2023-Front Mar Sci-VoR.pdf

accesso aperto

Descrizione: Original Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 6.23 MB
Formato Adobe PDF
6.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/415831
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact