We extend the generalized information criteria for high-dimensional penalized models to sparse statistical jump models, a new class of statistically robust and computationally efficient alternatives to hidden Markov models. In a simulation study, we demonstrate that the new generalized information criteria selects the correct hyperparameters with high probability. Finally, providing an empirical application, we infer the key features that drive the return dynamics of the largest cryptocurrencies. We find that a four-state model best describes the dynamics of cryptocurrency returns. The states have natural market-based interpretations as they correspond to bull, bull-neutral, bear-neutral, and bear market regimes, respectively.

Cortese, F., Kolm, P., Linstrom, E. (2023). Generalized Information Criteria for Sparse Statistical Jump Models. In Symposium i anvendt statistik - Copenhagen Business School (pp. 68-78). Økonomisk Institut, CBS.

Generalized Information Criteria for Sparse Statistical Jump Models

Cortese, FP
;
2023

Abstract

We extend the generalized information criteria for high-dimensional penalized models to sparse statistical jump models, a new class of statistically robust and computationally efficient alternatives to hidden Markov models. In a simulation study, we demonstrate that the new generalized information criteria selects the correct hyperparameters with high probability. Finally, providing an empirical application, we infer the key features that drive the return dynamics of the largest cryptocurrencies. We find that a four-state model best describes the dynamics of cryptocurrency returns. The states have natural market-based interpretations as they correspond to bull, bull-neutral, bear-neutral, and bear market regimes, respectively.
Capitolo o saggio
Clustering; Cryptocurrencies; Feature Selection; Information Criteria; Model Selection; Regime Switching; Unsupervised Learning
English
Symposium i anvendt statistik - Copenhagen Business School
2023
9788798937036
Økonomisk Institut, CBS
68
78
Cortese, F., Kolm, P., Linstrom, E. (2023). Generalized Information Criteria for Sparse Statistical Jump Models. In Symposium i anvendt statistik - Copenhagen Business School (pp. 68-78). Økonomisk Institut, CBS.
open
File in questo prodotto:
File Dimensione Formato  
Cortese-2023-Statistiki-VoR.pdf

accesso aperto

Descrizione: Contributo in libro
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Dominio pubblico
Dimensione 6.24 MB
Formato Adobe PDF
6.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/415738
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact