We study the regularized MGT equationuttt + alpha utt + beta Aut + gamma Au + delta Autt = 0where A is a strictly positive unbounded operator and alpha, beta, gamma, delta > 0. The effect of the regularizing term delta Autt translates into having an analytic semigroup S(t) = etA of solutions. Moreover, the asymptotic properties of the semigroup are ruled by the stability number Kappa = beta - gamma alpha + delta lambda 0which, contrary to the case of the standard MGT equation, depends also on the minimum lambda 0 > 0 of the spectrum of A.

Dell'Oro, F., Liverani, L., Pata, V. (2023). On the regularized Moore-Gibson-Thompson equation. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 16(9), 2326-2338 [10.3934/dcdss.2023025].

On the regularized Moore-Gibson-Thompson equation

Liverani, L
Co-primo
;
2023

Abstract

We study the regularized MGT equationuttt + alpha utt + beta Aut + gamma Au + delta Autt = 0where A is a strictly positive unbounded operator and alpha, beta, gamma, delta > 0. The effect of the regularizing term delta Autt translates into having an analytic semigroup S(t) = etA of solutions. Moreover, the asymptotic properties of the semigroup are ruled by the stability number Kappa = beta - gamma alpha + delta lambda 0which, contrary to the case of the standard MGT equation, depends also on the minimum lambda 0 > 0 of the spectrum of A.
Articolo in rivista - Articolo scientifico
Regularized MGT equation; analytic semigroup; spectrum; exponen-tial decay; thermodynamics of an ideal gas
English
feb-2023
2023
16
9
2326
2338
reserved
Dell'Oro, F., Liverani, L., Pata, V. (2023). On the regularized Moore-Gibson-Thompson equation. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 16(9), 2326-2338 [10.3934/dcdss.2023025].
File in questo prodotto:
File Dimensione Formato  
DellOro-2023-Discrete Contin Dyn Sys Ser S-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 397.54 kB
Formato Adobe PDF
397.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/414917
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
Social impact