We address the energy transfer in the differential system {uttt+αutt−βΔut−γΔu=−ηΔθθt−κΔθ=ηΔutt+αηΔut made by a Moore-Gibson-Thompson equation in the supercritical regime, hence antidissipative, coupled with the classical heat equation. The asymptotic properties of the related solution semigroup depend on the strength of the coupling, ruling the competition between the Fourier damping and the MGT antidamping. Exponential stability will be shown always to occur, provided that the coupling constant is sufficiently large with respect to the other structural parameters. A fact of general interest will be also discussed, namely, the impossibility of attaining the optimal exponential decay rate of a given dissipative system via energy estimates.
Conti, M., Liverani, L., Pata, V. (2021). The MGT-Fourier model in the supercritical case. JOURNAL OF DIFFERENTIAL EQUATIONS, 301, 543-567 [10.1016/j.jde.2021.08.030].
The MGT-Fourier model in the supercritical case
Lorenzo LiveraniCo-primo
;
2021
Abstract
We address the energy transfer in the differential system {uttt+αutt−βΔut−γΔu=−ηΔθθt−κΔθ=ηΔutt+αηΔut made by a Moore-Gibson-Thompson equation in the supercritical regime, hence antidissipative, coupled with the classical heat equation. The asymptotic properties of the related solution semigroup depend on the strength of the coupling, ruling the competition between the Fourier damping and the MGT antidamping. Exponential stability will be shown always to occur, provided that the coupling constant is sufficiently large with respect to the other structural parameters. A fact of general interest will be also discussed, namely, the impossibility of attaining the optimal exponential decay rate of a given dissipative system via energy estimates.File | Dimensione | Formato | |
---|---|---|---|
Conti-2021-J Differential Equations-VoR.pdf
Solo gestori archivio
Descrizione: Research Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
514.35 kB
Formato
Adobe PDF
|
514.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.