Current information regarding the effects of both micro- and nano-plastic debris on coral reefs is limited; especially the toxicity onto corals from nano-plastics originating from secondary sources such as fibers from synthetic fabrics. Within this study, we exposed the alcyonacean coral Pinnigorgia flava to different concentrations of polypropylene secondary nanofibers (0.001, 0.1, 1.0 and 10 mg/L) and then assayed mortality, mucus production, polyps retraction, coral tissue bleaching, and swelling. The assay materials were obtained by artificially weathering non-woven fabrics retrieved from commercially available personal protective equipment. Specifically, polypropylene (PP) nanofibers displaying a hydrodynamic size of 114.7 ± 8.1 nm and a polydispersity index (PDI) of 0.431 were obtained after 180 h exposition in a UV light aging chamber (340 nm at 0.76 Wˑm−2ˑnm−1). After 72 h of PP exposure no mortality was observed but there were evident stress responses from the corals tested. Specifically, the application of nanofibers at different concentrations caused significant differences in mucus production, polyps retraction and coral tissue swelling (ANOVA, p < 0.001, p = 0.015 and p = 0.015, respectively). NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect concentration) at 72 h resulted 0.1 mg/L and 1 mg/L, respectively. Overall, the study indicates that PP secondary nanofibers can cause adverse effects on corals and could potentially act as a stress factor in coral reefs. The generality of the method of producing and assaying the toxicity of secondary nanofibers from synthetic textiles is also discussed.

Isa, V., Becchi, A., Ellen Napper, I., Ubaldi, P., Saliu, F., Lavorano, S., et al. (2023). Effects of polypropylene nanofibers on soft corals. CHEMOSPHERE, 327(June 2023) [10.1016/j.chemosphere.2023.138509].

Effects of polypropylene nanofibers on soft corals

Valerio Isa;Alessandro Becchi;Paolo Ubaldi;Francesco Saliu
;
Paolo Galli
2023

Abstract

Current information regarding the effects of both micro- and nano-plastic debris on coral reefs is limited; especially the toxicity onto corals from nano-plastics originating from secondary sources such as fibers from synthetic fabrics. Within this study, we exposed the alcyonacean coral Pinnigorgia flava to different concentrations of polypropylene secondary nanofibers (0.001, 0.1, 1.0 and 10 mg/L) and then assayed mortality, mucus production, polyps retraction, coral tissue bleaching, and swelling. The assay materials were obtained by artificially weathering non-woven fabrics retrieved from commercially available personal protective equipment. Specifically, polypropylene (PP) nanofibers displaying a hydrodynamic size of 114.7 ± 8.1 nm and a polydispersity index (PDI) of 0.431 were obtained after 180 h exposition in a UV light aging chamber (340 nm at 0.76 Wˑm−2ˑnm−1). After 72 h of PP exposure no mortality was observed but there were evident stress responses from the corals tested. Specifically, the application of nanofibers at different concentrations caused significant differences in mucus production, polyps retraction and coral tissue swelling (ANOVA, p < 0.001, p = 0.015 and p = 0.015, respectively). NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect concentration) at 72 h resulted 0.1 mg/L and 1 mg/L, respectively. Overall, the study indicates that PP secondary nanofibers can cause adverse effects on corals and could potentially act as a stress factor in coral reefs. The generality of the method of producing and assaying the toxicity of secondary nanofibers from synthetic textiles is also discussed.
Articolo in rivista - Articolo scientifico
Alcyonaceans; Coral bleaching; Marine pollution; Nanoplastics; Pinnigorgia flava; Textiles; Toxicity;
English
28-mar-2023
2023
327
June 2023
138509
reserved
Isa, V., Becchi, A., Ellen Napper, I., Ubaldi, P., Saliu, F., Lavorano, S., et al. (2023). Effects of polypropylene nanofibers on soft corals. CHEMOSPHERE, 327(June 2023) [10.1016/j.chemosphere.2023.138509].
File in questo prodotto:
File Dimensione Formato  
Isa-2023-Chem-VoR.pdf

Solo gestori archivio

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/413728
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact