The adaptive finite element method (AFEM) is an effective numerical tool for solving linear and nonlinear PDEs. A proper local refinement plays a key role in AFEM and relies on proper a posteriori error estimators. In this contribution, we introduce a pointwise a posteriori error estimator for the symmetric interior penalty discontinuous Galerkin (SIPG) approximation of the elliptic obstacle problem.
Ayuso de Dios, B., Gudi, T., Porwal, K. (2022). A Posteriori Error Estimates in Maximum Norm for Interior Penalty Discontinuous Galerkin Approximation of the Obstacle Problem. In Domain Decomposition Methods in Science and Engineering XXVI (pp.205-212). Springer [10.1007/978-3-030-95025-5_20].
A Posteriori Error Estimates in Maximum Norm for Interior Penalty Discontinuous Galerkin Approximation of the Obstacle Problem
Ayuso de Dios, B
Primo
;
2022
Abstract
The adaptive finite element method (AFEM) is an effective numerical tool for solving linear and nonlinear PDEs. A proper local refinement plays a key role in AFEM and relies on proper a posteriori error estimators. In this contribution, we introduce a pointwise a posteriori error estimator for the symmetric interior penalty discontinuous Galerkin (SIPG) approximation of the elliptic obstacle problem.File | Dimensione | Formato | |
---|---|---|---|
Ayuso de Dios-2023-Lect Notes Computat Sci Engineer-VoR.pdf
Solo gestori archivio
Descrizione: Conference Paper
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.