In this paper, we investigate a class of spherical functional autoregressive processes, and we discuss the estimation of the corresponding autoregressive kernels. In particular, we first establish a consistency result (in mean-square and sup norm), then a quantitative central limit theorem (in Wasserstein distance), and finally a weak convergence result, under more restrictive regularity conditions. Our results are validated by a small numerical investigation.

Caponera, A., Marinucci, D. (2021). Asymptotics for spherical functional autoregressions. ANNALS OF STATISTICS, 49(1), 346-369 [10.1214/20-AOS1959].

Asymptotics for spherical functional autoregressions

Caponera, A;
2021

Abstract

In this paper, we investigate a class of spherical functional autoregressive processes, and we discuss the estimation of the corresponding autoregressive kernels. In particular, we first establish a consistency result (in mean-square and sup norm), then a quantitative central limit theorem (in Wasserstein distance), and finally a weak convergence result, under more restrictive regularity conditions. Our results are validated by a small numerical investigation.
Articolo in rivista - Articolo scientifico
Quantitative central limit theorem; Spherical functional autoregressions; Spherical harmonics; Wasserstein distance; Weak convergence;
English
2021
49
1
346
369
none
Caponera, A., Marinucci, D. (2021). Asymptotics for spherical functional autoregressions. ANNALS OF STATISTICS, 49(1), 346-369 [10.1214/20-AOS1959].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/410980
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
Social impact