Background: Sensory processing abnormalities are common in schizophrenia (SZ) and impact everyday functions, such as speech perception in noisy environments. Auditory-based targeted cognitive training (TCT) is a “bottom up” cognitive remediation intervention designed to enhance the speed and accuracy of low-level auditory information processing. However, the effects of TCT on behavioral measures of central auditory processing (CAP) and the role of CAP function on verbal learning outcomes in SZ are unknown. Methods: SZ (n = 42) and healthy subjects (CTL; n = 18) underwent comprehensive clinical, neurocognitive, and auditory assessments, including tests of hearing sensitivity and speech recognition (Words-in-Noise (WIN), Quick Speech-in-Noise (SIN)). SZ patients were randomized to receive either treatment-as-usual (TAU); or 30-h of TCT + TAU using a stratified, parallel design. SZ patients repeated assessments ~10–12 weeks later. Results: Patients exhibited deficits in both WIN (p < 0.05, d = 0.50) and SIN (p < 0.01, d = 0.63). A treatment × time interaction on WIN (p < 0.05, d = 0.74), but not SIN discriminability, was seen in the TCT group relative to TAU. Specific enhancements in the 4-dB over background range drove gains in WIN performance. Moreover, SZ patients with greater CAP deficits experienced robust gains in verbal learning after 30-h of TCT relative to SZ patients without CAP impairment (p < 0.01, d = 1.28). Conclusion: Findings demonstrate that intensive auditory training enhances the fidelity of auditory processing and perception, such that specific CAP deficits were ‘normalized’ and were predictive of gains in verbal learning after TCT. It is conceivable that patients with deficiencies in CAP measures may benefit most from TCT and other interventions targeting auditory dysfunction in SZ.
Molina, J., Joshi, Y., Nungaray, J., Thomas, M., Sprock, J., Clayson, P., et al. (2021). Central auditory processing deficits in schizophrenia: Effects of auditory-based cognitive training. SCHIZOPHRENIA RESEARCH, 236, 135-141 [10.1016/j.schres.2021.07.033].
Central auditory processing deficits in schizophrenia: Effects of auditory-based cognitive training
Biagianti B;
2021
Abstract
Background: Sensory processing abnormalities are common in schizophrenia (SZ) and impact everyday functions, such as speech perception in noisy environments. Auditory-based targeted cognitive training (TCT) is a “bottom up” cognitive remediation intervention designed to enhance the speed and accuracy of low-level auditory information processing. However, the effects of TCT on behavioral measures of central auditory processing (CAP) and the role of CAP function on verbal learning outcomes in SZ are unknown. Methods: SZ (n = 42) and healthy subjects (CTL; n = 18) underwent comprehensive clinical, neurocognitive, and auditory assessments, including tests of hearing sensitivity and speech recognition (Words-in-Noise (WIN), Quick Speech-in-Noise (SIN)). SZ patients were randomized to receive either treatment-as-usual (TAU); or 30-h of TCT + TAU using a stratified, parallel design. SZ patients repeated assessments ~10–12 weeks later. Results: Patients exhibited deficits in both WIN (p < 0.05, d = 0.50) and SIN (p < 0.01, d = 0.63). A treatment × time interaction on WIN (p < 0.05, d = 0.74), but not SIN discriminability, was seen in the TCT group relative to TAU. Specific enhancements in the 4-dB over background range drove gains in WIN performance. Moreover, SZ patients with greater CAP deficits experienced robust gains in verbal learning after 30-h of TCT relative to SZ patients without CAP impairment (p < 0.01, d = 1.28). Conclusion: Findings demonstrate that intensive auditory training enhances the fidelity of auditory processing and perception, such that specific CAP deficits were ‘normalized’ and were predictive of gains in verbal learning after TCT. It is conceivable that patients with deficiencies in CAP measures may benefit most from TCT and other interventions targeting auditory dysfunction in SZ.File | Dimensione | Formato | |
---|---|---|---|
Molina-2021-Schizophr Res-AAM.pdf
accesso aperto
Descrizione: Research Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
751.7 kB
Formato
Adobe PDF
|
751.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.