Leaf senescence at the end of the growing season is a complex process stimulated by changes in daylength and temperature that prepares deciduous trees for winter by reducing photosynthetic rates and remobilization of nutrients. Extending the duration of photosynthetic activity could have important consequences for the translocation of heavy metals in the phytoremediation of contaminated sites using deciduous trees like willow. In the present study, three Salix cultivars (‘India,’ ‘SX67,’ and ‘Fish Creek’) that were observed to maintain green leaves late into autumn were evaluated over an 11-week period extending from mid-September to mid-November on a brownfield site in Montreal, Canada. Gas exchange rates, chlorophyll fluorescence, and leaf pigments were measured weekly. A general trend of declining stomatal conductance and transpiration were observed early in the trial, followed by reductions in photosynthetic efficiency and concentrations of chl a, chl b, and carotenoids, in agreement with other studies. In particular, the cultivar ‘Fish Creek’ had higher rates of gas exchange and pigment concentrations than either ‘SX67’ or ‘India,’ but values for these parameters also declined more rapidly over the course of the trial. Both photoperiod and soil and air temperatures were strong drivers of changes in photosynthetic activity in all three of these cultivars according to correlation analyses. Further studies should focus on their biomass production and heavy metal accumulation capacity in light of the observed variation in photosynthetic activity stimulated by seasonal changes in light and temperature.
Palm, E., Guidi Nissim, W., Gagnon-Fee, D., Labrecque, M. (2022). Photosynthetic patterns during autumn in three different Salix cultivars grown on a brownfield site. PHOTOSYNTHESIS RESEARCH, 154(2), 155-167 [10.1007/s11120-022-00958-z].
Photosynthetic patterns during autumn in three different Salix cultivars grown on a brownfield site
Palm, E;Guidi Nissim, W
;
2022
Abstract
Leaf senescence at the end of the growing season is a complex process stimulated by changes in daylength and temperature that prepares deciduous trees for winter by reducing photosynthetic rates and remobilization of nutrients. Extending the duration of photosynthetic activity could have important consequences for the translocation of heavy metals in the phytoremediation of contaminated sites using deciduous trees like willow. In the present study, three Salix cultivars (‘India,’ ‘SX67,’ and ‘Fish Creek’) that were observed to maintain green leaves late into autumn were evaluated over an 11-week period extending from mid-September to mid-November on a brownfield site in Montreal, Canada. Gas exchange rates, chlorophyll fluorescence, and leaf pigments were measured weekly. A general trend of declining stomatal conductance and transpiration were observed early in the trial, followed by reductions in photosynthetic efficiency and concentrations of chl a, chl b, and carotenoids, in agreement with other studies. In particular, the cultivar ‘Fish Creek’ had higher rates of gas exchange and pigment concentrations than either ‘SX67’ or ‘India,’ but values for these parameters also declined more rapidly over the course of the trial. Both photoperiod and soil and air temperatures were strong drivers of changes in photosynthetic activity in all three of these cultivars according to correlation analyses. Further studies should focus on their biomass production and heavy metal accumulation capacity in light of the observed variation in photosynthetic activity stimulated by seasonal changes in light and temperature.File | Dimensione | Formato | |
---|---|---|---|
10281-404459_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
846.9 kB
Formato
Adobe PDF
|
846.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.