In this paper, we study two classes of Kirchhoff-type problems set on a double-phase framework. That is, the functional space where finding solutions coincides with the Musielak–Orlicz–Sobolev space W01,H(Ω), with modular function H related to the so-called double-phase operator. Via a variational approach, we provide existence and multiplicity results.

Fiscella, A., Pinamonti, A. (2023). Existence and Multiplicity Results for Kirchhoff-Type Problems on a Double-Phase Setting. MEDITERRANEAN JOURNAL OF MATHEMATICS, 20(1 (February 2023)) [10.1007/s00009-022-02245-6].

Existence and Multiplicity Results for Kirchhoff-Type Problems on a Double-Phase Setting

Fiscella, A
;
2023

Abstract

In this paper, we study two classes of Kirchhoff-type problems set on a double-phase framework. That is, the functional space where finding solutions coincides with the Musielak–Orlicz–Sobolev space W01,H(Ω), with modular function H related to the so-called double-phase operator. Via a variational approach, we provide existence and multiplicity results.
Articolo in rivista - Articolo scientifico
double-phase problems; Kirchhoff coefficients; variational methods;
English
11-dic-2022
2023
20
1 (February 2023)
33
none
Fiscella, A., Pinamonti, A. (2023). Existence and Multiplicity Results for Kirchhoff-Type Problems on a Double-Phase Setting. MEDITERRANEAN JOURNAL OF MATHEMATICS, 20(1 (February 2023)) [10.1007/s00009-022-02245-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/403659
Citazioni
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 17
Social impact