Impaired consciousness has long been considered the hallmark of epileptic seizures. Both generalized seizures and complex partial seizures are characterized by a multifaceted spectrum of altered conscious states, in terms of the general level of awareness and the subjective contents of consciousness. Complete loss of consciousness occurs when epileptic activity involves both cortical and subcortical structures, as in tonic-clonic seizures and absence seizures. Medial temporal lobe discharges can selectively impair experience in complex partial seizures (with affected responsiveness) and certain simple partial seizures (with unaffected responsiveness). Electrical stimulation of temporal lobe structures has been shown to evoke similar subjective experiences. Findings from neurophysiological and brain-imaging studies in epilepsy have now demonstrated that involvement of the bilateral thalamus and upper brainstem leads to selective impairment of frontoparietal association cortices and midline 'default mode' networks, which results in ictal loss of consciousness. The spread of epileptic discharges from the medial temporal lobe to the same subcortical structures can ultimately cause impairment in the level of consciousness in the late ictal and immediate postictal phase of complex partial seizures. This paper reviews novel insights into the brain mechanisms that underlie alterations of consciousness during epileptic seizures and the implications for clinical practice in terms of diagnosis and management.
Cavanna, A., Monaco, F. (2009). Brain mechanisms of altered conscious states during epileptic seizures. NATURE REVIEWS. NEUROLOGY, 5(5), 267-276 [10.1038/nrneurol.2009.38].
Brain mechanisms of altered conscious states during epileptic seizures
Cavanna A
;
2009
Abstract
Impaired consciousness has long been considered the hallmark of epileptic seizures. Both generalized seizures and complex partial seizures are characterized by a multifaceted spectrum of altered conscious states, in terms of the general level of awareness and the subjective contents of consciousness. Complete loss of consciousness occurs when epileptic activity involves both cortical and subcortical structures, as in tonic-clonic seizures and absence seizures. Medial temporal lobe discharges can selectively impair experience in complex partial seizures (with affected responsiveness) and certain simple partial seizures (with unaffected responsiveness). Electrical stimulation of temporal lobe structures has been shown to evoke similar subjective experiences. Findings from neurophysiological and brain-imaging studies in epilepsy have now demonstrated that involvement of the bilateral thalamus and upper brainstem leads to selective impairment of frontoparietal association cortices and midline 'default mode' networks, which results in ictal loss of consciousness. The spread of epileptic discharges from the medial temporal lobe to the same subcortical structures can ultimately cause impairment in the level of consciousness in the late ictal and immediate postictal phase of complex partial seizures. This paper reviews novel insights into the brain mechanisms that underlie alterations of consciousness during epileptic seizures and the implications for clinical practice in terms of diagnosis and management.File | Dimensione | Formato | |
---|---|---|---|
Cavanna-2009-Nat Rev Neurol-VoR.pdf
Solo gestori archivio
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
714.57 kB
Formato
Adobe PDF
|
714.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.