In Mathematical Music theory, the Aperiodic Tiling Complements Problem consists in finding all the possible aperiodic complements of a given rhythm A. The complexity of this problem depends on the size of the period n of the canon and on the cardinality of the given rhythm A. The current state-of-the-art algorithms can solve instances with n smaller than 180. In this paper we propose an ILP formulation and a SAT Encoding to solve this mathemusical problem, and we use the Maplesat solver to enumerate all the aperiodic complements. We validate our SAT Encoding using several different periods and rhythms and we compute for the first time the complete list of aperiodic tiling complements of standard Vuza rhythms for canons of period n= { 180, 420, 900 }.

Auricchio, G., Ferrarini, L., Gualandi, S., Lanzarotto, G., Pernazza, L. (2022). A SAT Encoding to Compute Aperiodic Tiling Rhythmic Canons. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022, Proceedings (pp.14-23). Springer [10.1007/978-3-031-08011-1_2].

A SAT Encoding to Compute Aperiodic Tiling Rhythmic Canons

Ferrarini, L
;
Lanzarotto, G;
2022

Abstract

In Mathematical Music theory, the Aperiodic Tiling Complements Problem consists in finding all the possible aperiodic complements of a given rhythm A. The complexity of this problem depends on the size of the period n of the canon and on the cardinality of the given rhythm A. The current state-of-the-art algorithms can solve instances with n smaller than 180. In this paper we propose an ILP formulation and a SAT Encoding to solve this mathemusical problem, and we use the Maplesat solver to enumerate all the aperiodic complements. We validate our SAT Encoding using several different periods and rhythms and we compute for the first time the complete list of aperiodic tiling complements of standard Vuza rhythms for canons of period n= { 180, 420, 900 }.
paper
Aperiodic tiling rhythms; Integer linear programming; Mathematical models for music; SAT encoding;
English
19th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research, CPAIOR 2022 - 20 June 2022 through 23 June 2022
2022
Integration of Constraint Programming, Artificial Intelligence, and Operations Research 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022, Proceedings
978-3-031-08010-4
2022
13292 LNCS
14
23
https://link.springer.com/chapter/10.1007/978-3-031-08011-1_2#citeas
reserved
Auricchio, G., Ferrarini, L., Gualandi, S., Lanzarotto, G., Pernazza, L. (2022). A SAT Encoding to Compute Aperiodic Tiling Rhythmic Canons. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022, Proceedings (pp.14-23). Springer [10.1007/978-3-031-08011-1_2].
File in questo prodotto:
File Dimensione Formato  
Auricchio-2022-Lecture Notes Computer Sci-VoR.pdf

Solo gestori archivio

Descrizione: Intervento a convegno
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 311.89 kB
Formato Adobe PDF
311.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/402261
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
Social impact