In Mathematical Music theory, the Aperiodic Tiling Complements Problem consists in finding all the possible aperiodic complements of a given rhythm A. The complexity of this problem depends on the size of the period n of the canon and on the cardinality of the given rhythm A. The current state-of-the-art algorithms can solve instances with n smaller than 180. In this paper we propose an ILP formulation and a SAT Encoding to solve this mathemusical problem, and we use the Maplesat solver to enumerate all the aperiodic complements. We validate our SAT Encoding using several different periods and rhythms and we compute for the first time the complete list of aperiodic tiling complements of standard Vuza rhythms for canons of period n= { 180, 420, 900 }.
Auricchio, G., Ferrarini, L., Gualandi, S., Lanzarotto, G., Pernazza, L. (2022). A SAT Encoding to Compute Aperiodic Tiling Rhythmic Canons. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022, Proceedings (pp.14-23). Springer [10.1007/978-3-031-08011-1_2].
A SAT Encoding to Compute Aperiodic Tiling Rhythmic Canons
Ferrarini, L
;Lanzarotto, G;
2022
Abstract
In Mathematical Music theory, the Aperiodic Tiling Complements Problem consists in finding all the possible aperiodic complements of a given rhythm A. The complexity of this problem depends on the size of the period n of the canon and on the cardinality of the given rhythm A. The current state-of-the-art algorithms can solve instances with n smaller than 180. In this paper we propose an ILP formulation and a SAT Encoding to solve this mathemusical problem, and we use the Maplesat solver to enumerate all the aperiodic complements. We validate our SAT Encoding using several different periods and rhythms and we compute for the first time the complete list of aperiodic tiling complements of standard Vuza rhythms for canons of period n= { 180, 420, 900 }.File | Dimensione | Formato | |
---|---|---|---|
Auricchio-2022-Lecture Notes Computer Sci-VoR.pdf
Solo gestori archivio
Descrizione: Intervento a convegno
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
311.89 kB
Formato
Adobe PDF
|
311.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.