We consider the Dirichlet problem on infinite and locally finite rooted trees, andwe prove that the set of irregular points for continuous data has zero capacity. We also give some uniqueness results for solutions in Sobolev W1,p of the tree.

Chalmoukis, N., Levi, M. (2019). Some remarks on the Dirichlet problem on infinite trees. CONCRETE OPERATORS, 6(1), 20-32 [10.1515/conop-2019-0002].

Some remarks on the Dirichlet problem on infinite trees

Chalmoukis, N;
2019

Abstract

We consider the Dirichlet problem on infinite and locally finite rooted trees, andwe prove that the set of irregular points for continuous data has zero capacity. We also give some uniqueness results for solutions in Sobolev W1,p of the tree.
Articolo in rivista - Articolo scientifico
Boundary Values and Capacities; Discrete Dirichlet Problem; Potential Theory
English
2019
6
1
20
32
open
Chalmoukis, N., Levi, M. (2019). Some remarks on the Dirichlet problem on infinite trees. CONCRETE OPERATORS, 6(1), 20-32 [10.1515/conop-2019-0002].
File in questo prodotto:
File Dimensione Formato  
Chalmoukis-2019-Concrete Operators-VoR.pdf

accesso aperto

Descrizione: [C., Levi, CO, 2019] Some remarks on the Dirichlet problem on infinite trees.pdf
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 419.74 kB
Formato Adobe PDF
419.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/401722
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
Social impact