We discuss random interpolating sequences in weighted Dirichlet spaces Dα, 0 ≤ α ≤ 1, when the radii of the sequence points are fixed a priori and the arguments are uniformly distributed. Although conditions for deterministic interpolation in these spaces depend on capacities, which are very hard to estimate in general, we show that random interpolation is driven by surprisingly simple distribution conditions. As a consequence, we obtain a breakpoint at α = 1/2 in the behavior of these random interpolating sequences showing more precisely that almost sure interpolating sequences for Dα are exactly the almost sure separated sequences when 0 ≤ α < 1/2 (which includes the Hardy space H2 = D0), and they are exactly the almost sure zero sequences for Dα when 1/2 ≤ α ≤ 1 (which includes the classical Dirichlet space D = D1).

Chalmoukis, N., Hartmann, A., Kellay, K., Wick, B. (2022). Random Interpolating Sequences in Dirichlet Spaces. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022(17 (August 2022)), 13629-13658 [10.1093/imrn/rnab110].

Random Interpolating Sequences in Dirichlet Spaces

Chalmoukis, N;
2022

Abstract

We discuss random interpolating sequences in weighted Dirichlet spaces Dα, 0 ≤ α ≤ 1, when the radii of the sequence points are fixed a priori and the arguments are uniformly distributed. Although conditions for deterministic interpolation in these spaces depend on capacities, which are very hard to estimate in general, we show that random interpolation is driven by surprisingly simple distribution conditions. As a consequence, we obtain a breakpoint at α = 1/2 in the behavior of these random interpolating sequences showing more precisely that almost sure interpolating sequences for Dα are exactly the almost sure separated sequences when 0 ≤ α < 1/2 (which includes the Hardy space H2 = D0), and they are exactly the almost sure zero sequences for Dα when 1/2 ≤ α ≤ 1 (which includes the classical Dirichlet space D = D1).
Articolo in rivista - Articolo scientifico
Interpolating sequences, separation, Carleson measure, random sequences
English
25-mag-2021
2022
2022
17 (August 2022)
13629
13658
partially_open
Chalmoukis, N., Hartmann, A., Kellay, K., Wick, B. (2022). Random Interpolating Sequences in Dirichlet Spaces. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022(17 (August 2022)), 13629-13658 [10.1093/imrn/rnab110].
File in questo prodotto:
File Dimensione Formato  
Chalmoukis-2022-IntMathResNot-Preprint.pdf

accesso aperto

Descrizione: [Chalmoukis et al., arXiv, 2020] Random interpolating sequences in Dirichlet spaces.pdf
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 565.8 kB
Formato Adobe PDF
565.8 kB Adobe PDF Visualizza/Apri
Chalmoukis-2022-IntMathResNot-VoR.pdf

Solo gestori archivio

Descrizione: [Chalmoukis et al., IMRN, 2021] Random interpolating sequences in Dirichlet spaces.pdf
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 360.92 kB
Formato Adobe PDF
360.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/401719
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
Social impact